Visible to the public Biblio

Filters: Keyword is sensor placement  [Clear All Filters]
2023-06-30
Pan, Xiyu, Mohammadi, Neda, Taylor, John E..  2022.  Smart City Digital Twins for Public Safety: A Deep Learning and Simulation Based Method for Dynamic Sensing and Decision-Making. 2022 Winter Simulation Conference (WSC). :808–818.
Technological innovations are expanding rapidly in the public safety sector providing opportunities for more targeted and comprehensive urban crime deterrence and detection. Yet, the spatial dispersion of crimes may vary over time. Therefore, it is unclear whether and how sensors can optimally impact crime rates. We developed a Smart City Digital Twin-based method to dynamically place license plate reader (LPR) sensors and improve their detection and deterrence performance. Utilizing continuously updated crime records, the convolutional long short-term memory algorithm predicted areas crimes were most likely to occur. Then, a Monte Carlo traffic simulation simulated suspect vehicle movements to determine the most likely routes to flee crime scenes. Dynamic LPR placement predictions were made weekly, capturing the spatiotemporal variation in crimes and enhancing LPR performance relative to static placement. We tested the proposed method in Warner Robins, GA, and results support the method's promise in detecting and deterring crime.
ISSN: 1558-4305
2021-04-27
Junosza-Szaniawski, K., Nogalski, D., Wójcik, A..  2020.  Exact and approximation algorithms for sensor placement against DDoS attacks. 2020 15th Conference on Computer Science and Information Systems (FedCSIS). :295–301.
In DDoS attack (Distributed Denial of Service), an attacker gains control of many network users by a virus. Then the controlled users send many requests to a victim, leading to lack of its resources. DDoS attacks are hard to defend because of distributed nature, large scale and various attack techniques. One of possible ways of defense is to place sensors in the network that can detect and stop an unwanted request. However, such sensors are expensive so there is a natural question about a minimum number of sensors and their optimal placement to get the required level of safety. We present two mixed integer models for optimal sensor placement against DDoS attacks. Both models lead to a trade-off between the number of deployed sensors and the volume of uncontrolled flow. Since above placement problems are NP-hard, two efficient heuristics are designed, implemented and compared experimentally with exact linear programming solvers.
2020-10-26
George, Chinnu Mary, Luke Babu, Sharon.  2019.  A Scalable Correlation Clustering strategy in Location Privacy for Wireless Sensor Networks against a Universal Adversary. 2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE). :1–3.
Wireless network sensors are outsized number of pocket sized sensors deployed in the area under surveillance. The sensor network is very sensitive to unattended and remote Environment with a wide variety of applications in the agriculture, health, industry there a lot of challenges being faced with respect to the energy, mobility, security. The paper presents with regard to the context based surrounding information which has location privacy to the source node against an adversary who sees the network at a whole so a correlation strategy is proposed for providing the privacy.
Mutalemwa, Lilian C., Shin, Seokjoo.  2018.  Realizing Source Location Privacy in Wireless Sensor Networks Through Agent Node Routing. 2018 International Conference on Information and Communication Technology Convergence (ICTC). :1283–1285.
Wireless Sensor Networks (WSNs) are used in sensitive applications such as in asset monitoring applications. Due to the sensitivity of information in these applications, it is important to ensure that flow of data between sensor nodes is secure and does not expose any information about the source node or the monitored assets. This paper proposes a scheme to preserve the source location privacy based on random routing techniques. To achieve high privacy, the proposed scheme randomly sends packet to sink node through tactically positioned agent nodes. The position of agent nodes is designed to guarantee that successive packets are routed through highly random and perplexing routing paths as compared to other routing schemes. Simulation results demonstrate that proposed scheme provides longer safety period and higher privacy against both, patient and cautious adversaries.
2020-06-08
Pirani, Mohammad, Nekouei, Ehsan, Sandberg, Henrik, Johansson, Karl Henrik.  2019.  A Game-theoretic Framework for Security-aware Sensor Placement Problem in Networked Control Systems. 2019 American Control Conference (ACC). :114–119.
This paper studies the sensor placement problem in a networked control system for improving its security against cyber-physical attacks. The problem is formulated as a zero-sum game between an attacker and a detector. The attacker's decision is to select f nodes of the network to attack whereas the detector's decision is to place f sensors to detect the presence of the attack signals. In our formulation, the attacker minimizes its visibility, defined as the system L2 gain from the attack signals to the deployed sensors' outputs, and the detector maximizes the visibility of the attack signals. The equilibrium strategy of the game determines the optimal locations of the sensors. The existence of Nash equilibrium for the attacker-detector game is studied when the underlying connectivity graph is a directed or an undirected tree. When the game does not admit a Nash equilibrium, it is shown that the Stackelberg equilibrium of the game, with the detector as the game leader, can be computed efficiently. Our results show that, under the optimal sensor placement strategy, an undirected topology provides a higher security level for a networked control system compared with its corresponding directed topology.
2020-02-26
Dong, Jiaojiao, Zhu, Lin, Liu, Yilu, Rizy, D. Tom.  2019.  Enhancing Distribution System Monitoring and Resiliency: A Sensor Placement Optimization Tool (SPOT). 2019 IEEE Power Energy Society General Meeting (PESGM). :1–5.

Optimal placement of new sensors is of great importance to enhancing distribution system monitoring and resiliency. Utilities are in need of a platform for an optimal sensor placement strategy other than the traditional experience-based strategy. In this paper, a sensor placement optimization tool (SPOT) is developed. It contains two selected modules based on industry priority: distribution system state estimation (DSE) and recloser placement (RP). The DSE module incorporates three-phase system functionality to reflect practical distribution systems with asymmetrical topology and unbalanced loading. In the RP module, the impact of microgrids is modeled. SPOT is timely since it can assist utilities in developing their own optimal sensor allocation strategies.

2020-02-17
Yapar, Büşranur, Güven, Ebu Yusuf, Aydın, Muhammed Ali.  2019.  Security on Wireless Sensor Network. 2019 4th International Conference on Computer Science and Engineering (UBMK). :693–698.
Wireless sensor networks are called wireless networks consisting of low-cost sensor nodes that use limited resources, collect and distribute data. Wireless sensor networks make observation and control of physical environments from distance easier. They are used in a variety of areas, such as environmental surveillance, military purposes, and the collection of information in specific areas. While the low cost of sensor nodes allows it to spread and increase it's quantitative, battery and computational constraints, noise and manipulation threats from the environment cause various challenges in wireless sensor applications. To overcome these challenges, researches have conducted a lot of researches on various fields like power consumption, use of resources and security approaches. In these studies, routing, placement algorithms and system designs are generally examined for efficient energy consumption. In this article, the relationship between the security of sensor networks and efficient resource usage and various scenarios are presented.
2019-02-18
Yuan, Y., Huo, L., Wang, Z., Hogrefe, D..  2018.  Secure APIT Localization Scheme Against Sybil Attacks in Distributed Wireless Sensor Networks. IEEE Access. 6:27629–27636.
For location-aware applications in wireless sensor networks (WSNs), it is important to ensure that sensor nodes can get correct locations in a hostile WSNs. Sybil attacks, which are vital threats in WSNs, especially in the distributed WSNs. They can forge one or multiple identities to decrease the localization accuracy, or sometimes to collapse the whole localization systems. In this paper, a novel lightweight sybilfree (SF)-APIT algorithm is presented to solve the problem of sybil attacks in APIT localization scheme, which is a popular range-free method and performs at individual node in a purely distributed fashion. The proposed SF-APIT scheme requires minimal overhead for wireless devices and works well based on the received signal strength. Simulations demonstrate that SF-APIT is an effective scheme in detecting and defending against sybil attacks with a high detection rate in distributed wireless localization schemes.
2018-04-02
Siddiqi, M., All, S. T., Sivaraman, V..  2017.  Secure Lightweight Context-Driven Data Logging for Bodyworn Sensing Devices. 2017 5th International Symposium on Digital Forensic and Security (ISDFS). :1–6.

Rapid advancement in wearable technology has unlocked a tremendous potential of its applications in the medical domain. Among the challenges in making the technology more useful for medical purposes is the lack of confidence in the data thus generated and communicated. Incentives have led to attacks on such systems. We propose a novel lightweight scheme to securely log the data from bodyworn sensing devices by utilizing neighboring devices as witnesses who store the fingerprints of data in Bloom filters to be later used for forensics. Medical data from each sensor is stored at various locations of the system in chronological epoch-level blocks chained together, similar to the blockchain. Besides secure logging, the scheme offers to secure other contextual information such as localization and timestamping. We prove the effectiveness of the scheme through experimental results. We define performance parameters of our scheme and quantify their cost benefit trade-offs through simulation.

2018-01-16
Nagar, S., Rajput, S. S., Gupta, A. K., Trivedi, M. C..  2017.  Secure routing against DDoS attack in wireless sensor network. 2017 3rd International Conference on Computational Intelligence Communication Technology (CICT). :1–6.

Wireless sensor network is a low cost network to solve many of the real world problems. These sensor nodes used to deploy in the hostile or unattended areas to sense and monitor the atmospheric situations such as motion, pressure, sound, temperature and vibration etc. The sensor nodes have low energy and low computing power, any security scheme for wireless sensor network must not be computationally complex and it should be efficient. In this paper we introduced a secure routing protocol for WSNs, which is able to prevent the network from DDoS attack. In our methodology we scan the infected nodes using the proposed algorithm and block that node from any further activities in the network. To protect the network we use intrusion prevention scheme, where specific nodes of the network acts as IPS node. These nodes operate in their radio range for the region of the network and scan the neighbors regularly. When the IPS node find a misbehavior node which is involves in frequent message passing other than UDP and TCP messages, IPS node blocks the infected node and also send the information to all genuine sender nodes to change their routes. All simulation work has been done using NS 2.35. After simulation the proposed scheme gives feasible results to protect the network against DDoS attack. The performance parameters have been improved after applying the security mechanism on an infected network.

2017-03-08
Jalili, A., Ahmadi, V., Keshtgari, M., Kazemi, M..  2015.  Controller placement in software-defined WAN using multi objective genetic algorithm. 2015 2nd International Conference on Knowledge-Based Engineering and Innovation (KBEI). :656–662.

SDN is a promising architecture that can overcome the challenges facing traditional networks. SDN enables administrator/operator to build a simpler, customizable, programmable, and manageable network. In software-defined WAN deployments, multiple controllers are often needed, and the location of these controllers affect various metrics. Since these metrics conflict each other, this problem can be regarded as a multi-objective combinatorial optimization problem (MOCO). A particular efficient method to solve a typical MOCO, which is used in the relevant literature, is to find the actual Pareto frontier first and give it to the decision maker to select the most appropriate solution(s). In small and medium sized combinatorial problems, evaluating the whole search space and find the exact Pareto frontier may be possible in a reasonable time. However, for large scale problems whose search spaces involves thousands of millions of solutions, the exhaustive evaluation needs a considerable amount of computational efforts and memory used. An effective alternative mechanism is to estimate the original Pareto frontier within a relatively small algorithm's runtime and memory consumption. Heuristic methods, which have been studied well in the literature, proved to be very effective methods in this regards. The second version of the Non-dominated Sorting Genetic Algorithm, called NSGA-II has been carried out quite well on different discrete and continuous optimization problems. In this paper, we adapt this efficient mechanism for a new presented multi-objective model of the control placement problem [7]. The results of implementing the adapted algorithm carried out on the Internet2 OS3E network run on MATLAB 2013b confirmed its effectiveness.

2015-05-01
Tsado, Y., Lund, D., Gamage, K..  2014.  Resilient wireless communication networking for Smart grid BAN. Energy Conference (ENERGYCON), 2014 IEEE International. :846-851.

The concept of Smart grid technology sets greater demands for reliability and resilience on communications infrastructure. Wireless communication is a promising alternative for distribution level, Home Area Network (HAN), smart metering and even the backbone networks that connect smart grid applications to control centres. In this paper, the reliability and resilience of smart grid communication network is analysed using the IEEE 802.11 communication technology in both infrastructure single hop and mesh multiple-hop topologies for smart meters in a Building Area Network (BAN). Performance of end to end delay and Round Trip Time (RTT) of an infrastructure mode smart meter network for Demand Response (DR) function is presented. Hybrid deployment of these network topologies is also suggested to provide resilience and redundancy in the network during network failure or when security of the network is circumvented. This recommendation can also be deployed in other areas of the grid where wireless technologies are used. DR communication from consumer premises is used to show the performance of an infrastructure mode smart metering network.