Visible to the public Biblio

Filters: Keyword is Robot control  [Clear All Filters]
2023-02-17
Amaya-Mejía, Lina María, Duque-Suárez, Nicolás, Jaramillo-Ramírez, Daniel, Martinez, Carol.  2022.  Vision-Based Safety System for Barrierless Human-Robot Collaboration. 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). :7331–7336.

Human safety has always been the main priority when working near an industrial robot. With the rise of Human-Robot Collaborative environments, physical barriers to avoiding collisions have been disappearing, increasing the risk of accidents and the need for solutions that ensure a safe Human-Robot Collaboration. This paper proposes a safety system that implements Speed and Separation Monitoring (SSM) type of operation. For this, safety zones are defined in the robot's workspace following current standards for industrial collaborative robots. A deep learning-based computer vision system detects, tracks, and estimates the 3D position of operators close to the robot. The robot control system receives the operator's 3D position and generates 3D representations of them in a simulation environment. Depending on the zone where the closest operator was detected, the robot stops or changes its operating speed. Three different operation modes in which the human and robot interact are presented. Results show that the vision-based system can correctly detect and classify in which safety zone an operator is located and that the different proposed operation modes ensure that the robot's reaction and stop time are within the required time limits to guarantee safety.

ISSN: 2153-0866

2021-07-07
Antevski, Kiril, Groshev, Milan, Baldoni, Gabriele, Bernardos, Carlos J..  2020.  DLT federation for Edge robotics. 2020 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN). :71–76.
The concept of federation in 5G and NFV networks aims to provide orchestration of services across multiple administrative domains. Edge robotics, as a field of robotics, implements the robot control on the network edge by relying on low-latency and reliable access connectivity. In this paper, we propose a solution that enables Edge robotics service to expand its service footprint or access coverage over multiple administrative domains. We propose application of Distributed ledger technologies (DLTs) for the federation procedures to enable private, secure and trusty interactions between undisclosed administrative domains. The solution is applied on a real-case Edge robotics experimental scenario. The results show that it takes around 19 seconds to deploy & federate a Edge robotics service in an external/anonymous domain without any service down-time.
2019-12-16
Lopes, José, Robb, David A., Ahmad, Muneeb, Liu, Xingkun, Lohan, Katrin, Hastie, Helen.  2019.  Towards a Conversational Agent for Remote Robot-Human Teaming. 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI). :548–549.

There are many challenges when it comes to deploying robots remotely including lack of operator situation awareness and decreased trust. Here, we present a conversational agent embodied in a Furhat robot that can help with the deployment of such remote robots by facilitating teaming with varying levels of operator control.