Visible to the public Biblio

Filters: Keyword is deep learning algorithms  [Clear All Filters]
2021-03-29
Pranav, E., Kamal, S., Chandran, C. Satheesh, Supriya, M. H..  2020.  Facial Emotion Recognition Using Deep Convolutional Neural Network. 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS). :317—320.

The rapid growth of artificial intelligence has contributed a lot to the technology world. As the traditional algorithms failed to meet the human needs in real time, Machine learning and deep learning algorithms have gained great success in different applications such as classification systems, recommendation systems, pattern recognition etc. Emotion plays a vital role in determining the thoughts, behaviour and feeling of a human. An emotion recognition system can be built by utilizing the benefits of deep learning and different applications such as feedback analysis, face unlocking etc. can be implemented with good accuracy. The main focus of this work is to create a Deep Convolutional Neural Network (DCNN) model that classifies 5 different human facial emotions. The model is trained, tested and validated using the manually collected image dataset.

2020-12-01
Karatas, G., Demir, O., Sahingoz, O. K..  2019.  A Deep Learning Based Intrusion Detection System on GPUs. 2019 11th International Conference on Electronics, Computers and Artificial Intelligence (ECAI). :1—6.

In recent years, almost all the real-world operations are transferred to cyber world and these market computers connect with each other via Internet. As a result of this, there is an increasing number of security breaches of the networks, whose admins cannot protect their networks from the all types of attacks. Although most of these attacks can be prevented with the use of firewalls, encryption mechanisms, access controls and some password protections mechanisms; due to the emergence of new type of attacks, a dynamic intrusion detection mechanism is always needed in the information security market. To enable the dynamicity of the Intrusion Detection System (IDS), it should be updated by using a modern learning mechanism. Neural Network approach is one of the mostly preferred algorithms for training the system. However, with the increasing power of parallel computing and use of big data for training, as a new concept, deep learning has been used in many of the modern real-world problems. Therefore, in this paper, we have proposed an IDS system which uses GPU powered Deep Learning Algorithms. The experimental results are collected on mostly preferred dataset KDD99 and it showed that use of GPU speed up training time up to 6.48 times depending on the number of the hidden layers and nodes in them. Additionally, we compare the different optimizers to enlighten the researcher to select the best one for their ongoing or future research.

2020-07-06
Chai, Yadeng, Liu, Yong.  2019.  Natural Spoken Instructions Understanding for Robot with Dependency Parsing. 2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). :866–871.
This paper presents a method based on syntactic information, which can be used for intent determination and slot filling tasks in a spoken language understanding system including the spoken instructions understanding module for robot. Some studies in recent years attempt to solve the problem of spoken language understanding via syntactic information. This research is a further extension of these approaches which is based on dependency parsing. In this model, the input for neural network are vectors generated by a dependency parsing tree, which we called window vector. This vector contains dependency features that improves performance of the syntactic-based model. The model has been evaluated on the benchmark ATIS task, and the results show that it outperforms many other syntactic-based approaches, especially in terms of slot filling, it has a performance level on par with some state of the art deep learning algorithms in recent years. Also, the model has been evaluated on FBM3, a dataset of the RoCKIn@Home competition. The overall rate of correctly understanding the instructions for robot is quite good but still not acceptable in practical use, which is caused by the small scale of FBM3.
2020-07-03
Pan, Jonathan.  2019.  Physical Integrity Attack Detection of Surveillance Camera with Deep Learning based Video Frame Interpolation. 2019 IEEE International Conference on Internet of Things and Intelligence System (IoTaIS). :79—85.

Surveillance cameras, which is a form of Cyber Physical System, are deployed extensively to provide visual surveillance monitoring of activities of interest or anomalies. However, these cameras are at risks of physical security attacks against their physical attributes or configuration like tampering of their recording coverage, camera positions or recording configurations like focus and zoom factors. Such adversarial alteration of physical configuration could also be invoked through cyber security attacks against the camera's software vulnerabilities to administratively change the camera's physical configuration settings. When such Cyber Physical attacks occur, they affect the integrity of the targeted cameras that would in turn render these cameras ineffective in fulfilling the intended security functions. There is a significant measure of research work in detection mechanisms of cyber-attacks against these Cyber Physical devices, however it is understudied area with such mechanisms against integrity attacks on physical configuration. This research proposes the use of the novel use of deep learning algorithms to detect such physical attacks originating from cyber or physical spaces. Additionally, we proposed the novel use of deep learning-based video frame interpolation for such detection that has comparatively better performance to other anomaly detectors in spatiotemporal environments.

2020-01-20
Osken, Sinem, Yildirim, Ecem Nur, Karatas, Gozde, Cuhaci, Levent.  2019.  Intrusion Detection Systems with Deep Learning: A Systematic Mapping Study. 2019 Scientific Meeting on Electrical-Electronics Biomedical Engineering and Computer Science (EBBT). :1–4.

In this study, a systematic mapping study was conducted to systematically evaluate publications on Intrusion Detection Systems with Deep Learning. 6088 papers have been examined by using systematic mapping method to evaluate the publications related to this paper, which have been used increasingly in the Intrusion Detection Systems. The goal of our study is to determine which deep learning algorithms were used mostly in the algortihms, which criteria were taken into account for selecting the preferred deep learning algorithm, and the most searched topics of intrusion detection with deep learning algorithm model. Scientific studies published in the last 10 years have been studied in the IEEE Explorer, ACM Digital Library, Science Direct, Scopus and Wiley databases.