Biblio
Recently, the field of adversarial machine learning has been garnering attention by showing that state-of-the-art deep neural networks are vulnerable to adversarial examples, stemming from small perturbations being added to the input image. Adversarial examples are generated by a malicious adversary by obtaining access to the model parameters, such as gradient information, to alter the input or by attacking a substitute model and transferring those malicious examples over to attack the victim model. Specifically, one of these attack algorithms, Robust Physical Perturbations (RP2), generates adversarial images of stop signs with black and white stickers to achieve high targeted misclassification rates against standard-architecture traffic sign classifiers. In this paper, we propose BlurNet, a defense against the RP2 attack. First, we motivate the defense with a frequency analysis of the first layer feature maps of the network on the LISA dataset, which shows that high frequency noise is introduced into the input image by the RP2 algorithm. To remove the high frequency noise, we introduce a depthwise convolution layer of standard blur kernels after the first layer. We perform a blackbox transfer attack to show that low-pass filtering the feature maps is more beneficial than filtering the input. We then present various regularization schemes to incorporate this lowpass filtering behavior into the training regime of the network and perform white-box attacks. We conclude with an adaptive attack evaluation to show that the success rate of the attack drops from 90% to 20% with total variation regularization, one of the proposed defenses.
There is an inevitable trade-off between spatial and spectral resolutions in optical remote sensing images. A number of data fusion techniques of multimodal images with different spatial and spectral characteristics have been developed to generate optical images with both spatial and spectral high resolution. Although some of the techniques take the spectral and spatial blurring process into account, there is no method that attempts to retrieve an optical image with both spatial and spectral high resolution, a spectral blurring filter and a spectral response simultaneously. In this paper, we propose a new framework of spatial resolution enhancement by a fusion of multiple optical images with different characteristics based on tensor decomposition. An optical image with both spatial and spectral high resolution, together with a spatial blurring filter and a spectral response, is generated via canonical polyadic (CP) decomposition of a set of tensors. Experimental results featured that relatively reasonable results were obtained by regularization based on nonnegativity and coupling.
Arabic handwritten documents present specific challenges due to the cursive nature of the writing and the presence of diacritical marks. Moreover, one of the largest labeled database of Arabic handwritten documents, the OpenHart-NIST database includes specific noise, namely guidelines, that has to be addressed. We propose several approaches to process these documents. First a guideline detection approach has been developed, based on K-means, that detects the documents that include guidelines. We then propose a series of preprocessing at text-line level to reduce the noise effects. For text-lines including guidelines, a guideline removal preprocessing is described and existing keystroke restoration approaches are assessed. In addition, we propose a preprocessing that combines noise removal and deskewing by removing line fragments from neighboring text lines, while searching for the principal orientation of the text-line. We provide recognition results, showing the significant improvement brought by the proposed processings.
Blind objective metrics to automatically quantify perceived image quality degradation introduced by blur, is highly beneficial for current digital imaging systems. We present, in this paper, a perceptual no reference blur assessment metric developed in the frequency domain. As blurring affects specially edges and fine image details, that represent high frequency components of an image, the main idea turns on analysing, perceptually, the impact of blur distortion on high frequencies using the Discrete Cosine Transform DCT and the Just noticeable blur concept JNB relying on the Human Visual System. Comprehensive testing demonstrates the proposed Perceptual Blind Blur Quality Metric (PBBQM) good consistency with subjective quality scores as well as satisfactory performance in comparison with both the representative non perceptual and perceptual state-of-the-art blind blur quality measures.
Salt and Pepper Noise is very common during transmission of images through a noisy channel or due to impairment in camera sensor module. For noise removal, methods have been proposed in literature, with two stage cascade various configuration. These methods, can remove low density impulse noise, are not suited for high density noise in terms of visible performance. We propose an efficient method for removal of high as well as low density impulse noise. Our approach is based on novel extension over iterated conditional modes (ICM). It is cascade configuration of two stages - noise detection and noise removal. Noise detection process is a combination of iterative decision based approach, while noise removal process is based on iterative noisy pixel estimation. Using improvised approach, up to 95% corrupted image have been recovered with good results, while 98% corrupted image have been recovered with quite satisfactory results. To benchmark the image quality, we have considered various metrics like PSNR (Peak Signal to Noise Ratio), MSE (Mean Square Error) and SSIM (Structure Similarity Index Measure).
The main emphasis of this paper is to develop an approach able to detect and assess blindly the perceptual blur degradation in images. The idea deals with a statistical modelling of perceptual blur degradation in the frequency domain using the discrete cosine transform (DCT) and the Just Noticeable Blur (JNB) concept. A machine learning system is then trained using the considered statistical features to detect perceptual blur effect in the acquired image and eventually produces a quality score denoted BBQM for Blind Blur Quality Metric. The proposed BBQM efficiency is tested objectively by evaluating it's performance against some existing metrics in terms of correlation with subjective scores.
Image inpainting is the process of filling the unwanted region in an image marked by the user. It is used for restoring old paintings and photographs, removal of red eyes from pictures, etc. In this paper, we propose an efficient inpainting algorithm which takes care of false edge propagation. We use the classical exemplar based technique to find out the priority term for each patch. To ensure that the edge content of the nearest neighbor patch found by minimizing L2 distance between patches, we impose an additional constraint that the entropy of the patches be similar. Entropy of the patch acts as a good measure of edge content. Additionally, we fill the image by considering overlapping patches to ensure smoothness in the output. We use structural similarity index as the measure of similarity between ground truth and inpainted image. The results of the proposed approach on a number of examples on real and synthetic images show the effectiveness of our algorithm in removing objects and thin scratches or text written on image. It is also shown that the proposed approach is robust to the shape of the manually selected target. Our results compare favorably to those obtained by existing techniques.
The statistical fingerprints left by median filtering can be a valuable clue for image forensics. However, these fingerprints may be maliciously erased by a forger. Recently, a tricky anti-forensic method has been proposed to remove median filtering traces by restoring images' pixel difference distribution. In this paper, we analyze the traces of this anti-forensic technique and propose a novel counter method. The experimental results show that our method could reveal this anti-forensics effectively at low computation load. According to our best knowledge, it's the first work on countering anti-forensics of median filtering.