Biblio
The power industrial control system is an important part of the national critical Information infrastructure. Its security is related to the national strategic security and has become an important target of cyber attacks. In order to solve the problem that the vulnerability detection technology of power industrial control system cannot meet the requirement of non-destructive, this paper proposes an industrial control vulnerability analysis technology combined with dynamic and static analysis technology. On this basis, an industrial control non-destructive vulnerability detection system is designed, and a simulation verification platform is built to verify the effectiveness of the industrial control non-destructive vulnerability detection system. These provide technical support for the safety protection research of the power industrial control system.
ISSN: 2693-289X
Under the situation of regular epidemic prevention and control, teleworking has gradually become a normal working mode. With the development of modern information technologies such as big data, cloud computing and mobile Internet, it's become a problem that how to build an effective security defense system to ensure the information security of teleworking in complex network environment while ensuring the availability, collaboration and efficiency of teleworking. One of the solutions is Zero Trust Network(ZTN), most enterprise infrastructures will operate in a hybrid zero trust/perimeter-based mode while continuing to invest in IT modernization initiatives and improve organization business processes. In this paper, we have systematically studied the zero trust principles, the logical components of zero trust architecture and the key technology of zero trust network. Based on the abstract model of zero trust architecture and information security technologies, a prototype has been realized which suitable for iOS terminals to access enterprise resources safely in teleworking mode.
Noise has been used as a way of protecting privacy of users in public datasets for many decades now. Differential privacy is a new standard to add noise, so that user privacy is protected. When this technique is applied for a single end user data, it's called local differential privacy. In this study, we evaluate the effects of adding noise to generate randomized responses on machine learning models. We generate randomized responses using Gaussian, Laplacian noise on singular end user data as well as correlated end user data. Finally, we provide results that we have observed on a few data sets for various machine learning use cases.