Biblio
Advancements in the AI field unfold tremendous opportunities for society. Simultaneously, it becomes increasingly important to address emerging ramifications. Thereby, the focus is often set on ethical and safe design forestalling unintentional failures. However, cybersecurity-oriented approaches to AI safety additionally consider instantiations of intentional malice – including unethical malevolent AI design. Recently, an analogous emphasis on malicious actors has been expressed regarding security and safety for virtual reality (VR). In this vein, while the intersection of AI and VR (AIVR) offers a wide array of beneficial cross-fertilization possibilities, it is responsible to anticipate future malicious AIVR design from the onset on given the potential socio-psycho-technological impacts. For a simplified illustration, this paper analyzes the conceivable use case of Generative AI (here deepfake techniques) utilized for disinformation in immersive journalism. In our view, defenses against such future AIVR safety risks related to falsehood in immersive settings should be transdisciplinarily conceived from an immersive co-creation stance. As a first step, we motivate a cybersecurity-oriented procedure to generate defenses via immersive design fictions. Overall, there may be no panacea but updatable transdisciplinary tools including AIVR itself could be used to incrementally defend against malicious actors in AIVR.
Most anti-collusion audio fingerprinting schemes are aiming at finding colluders from the illegal redistributed audio copies. However, the loss caused by the redistributed versions is inevitable. In this letter, a novel fingerprinting scheme is proposed to eliminate the motivation of collusion attack. The audio signal is transformed to the frequency domain by the Fourier transform, and the coefficients in frequency domain are reversed in different degrees according to the fingerprint sequence. Different from other fingerprinting schemes, the coefficients of the host media are excessively modified by the proposed method in order to reduce the quality of the colluded version significantly, but the imperceptibility is well preserved. Experiments show that the colluded audio cannot be reused because of the poor quality. In addition, the proposed method can also resist other common attacks. Various kinds of copyright risks and losses caused by the illegal redistribution are effectively avoided, which is significant for protecting the copyright of audio.
Communication between two Internet hosts using parallel connections may result in unwanted interference between the connections. In this dissertation, we propose a sender-side solution to address this problem by letting the congestion controllers of the different connections collaborate, correctly taking congestion control logic into account. Real-life experiments and simulations show that our solution works for a wide variety of congestion control mechanisms, provides great flexibility when allocating application traffic to the connections, and results in lower queuing delay and less packet loss.
With the rapid development of the Internet of vehicles, there is a huge amount of multimedia data becoming a hidden trouble in the Internet of Things. Therefore, it is necessary to process and store them in real time as a way of big data curation. In this paper, a method of real-time processing and storage based on CDN in vehicle monitoring system is proposed. The MPEG-DASH standard is used to process the multimedia data by dividing them into MPD files and media segments. A real-time monitoring system of vehicle on the basis of the method introduced is designed and implemented.
What does it mean to trust, or not trust, an augmented reality system? Froma computer security point of view, trust in augmented reality represents a real threat to real people. The fact that augmented reality allows the programmer to tinker with the user's senses creates many opportunities for malfeasance. It might be natural to think that if we warn users to be careful it will lower their trust in the system, greatly reducing risk.
Intentionally deceptive content presented under the guise of legitimate journalism is a worldwide information accuracy and integrity problem that affects opinion forming, decision making, and voting patterns. Most so-called `fake news' is initially distributed over social media conduits like Facebook and Twitter and later finds its way onto mainstream media platforms such as traditional television and radio news. The fake news stories that are initially seeded over social media platforms share key linguistic characteristics such as making excessive use of unsubstantiated hyperbole and non-attributed quoted content. In this paper, the results of a fake news identification study that documents the performance of a fake news classifier are presented. The Textblob, Natural Language, and SciPy Toolkits were used to develop a novel fake news detector that uses quoted attribution in a Bayesian machine learning system as a key feature to estimate the likelihood that a news article is fake. The resultant process precision is 63.333% effective at assessing the likelihood that an article with quotes is fake. This process is called influence mining and this novel technique is presented as a method that can be used to enable fake news and even propaganda detection. In this paper, the research process, technical analysis, technical linguistics work, and classifier performance and results are presented. The paper concludes with a discussion of how the current system will evolve into an influence mining system.
In this paper we consider the threat surface and security of air gapped wallet schemes for permissioned blockchains as preparation for a Markov based mathematical model, and quantify the risk associated with private key leakage. We identify existing threats to the wallet scheme and existing work done to both attack and secure the scheme. We provide an overview the proposed model and outline justification for our methods. We follow with next steps in our remaining work and the overarching goals and motivation for our methods.
In this paper we consider the threat surface and security of air gapped wallet schemes for permissioned blockchains as preparation for a Markov based mathematical model, and quantify the risk associated with private key leakage. We identify existing threats to the wallet scheme and existing work done to both attack and secure the scheme. We provide an overview the proposed model and outline justification for our methods. We follow with next steps in our remaining work and the overarching goals and motivation for our methods.