Visible to the public Biblio

Filters: Keyword is Skin  [Clear All Filters]
2023-03-17
Wang, Yushi, Kamezaki, Mitsuhiro, Wang, Qichen, Sakamoto, Hiroyuki, Sugano, Shigeki.  2022.  3-Axis Force Estimation of a Soft Skin Sensor using Permanent Magnetic Elastomer (PME) Sheet with Strong Remanence. 2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). :302–307.
This paper describes a prototype of a novel Permanent Magnetic Elastomer (PME) sheet based skin sensor for robotic applications. Its working principle is to use a Hall effect transducer to measure the change of magnetic field. PME is a polymer that has Neodymium particles distributed inside it, after strong magnetization for anisotropy, the PME acquires strong remanent magnetization that can be comparable to that of a permanent magnet, in this work, we made improvement of the strength of the magnetic field of PME, so it achieved magnetic strength as high as 25 mT when there is no deformation. When external forces apply on the sensor, the deformation of PME causes a change in the magnetic field due to the change in the alignment of the magnetic particles. Compared with other soft magnetic sensors that employ similar technology, we implemented linear regression method to simplify the calibration, so we focus on the point right above the magnetometer. An MLX90393 chip is installed at the bottom of the PME as the magnetometer. Experimental results show that it can measure forces from 0.01–10 N. Calibration is confirmed effective even for shear directions when the surface of PME is less than 15 x 15 mm.
ISSN: 2159-6255
2023-02-03
Sadek, Mennatallah M., Khalifa, Amal, Khafga, Doaa.  2022.  An enhanced Skin-tone Block-map Image Steganography using Integer Wavelet Transforms. 2022 5th International Conference on Computing and Informatics (ICCI). :378–384.
Steganography is the technique of hiding a confidential message in an ordinary message where the extraction of embedded information is done at its destination. Among the different carrier files formats; digital images are the most popular. This paper presents a Wavelet-based method for hiding secret information in digital images where skin areas are identified and used as a region of interest. The work presented here is an extension of a method published earlier by the authors that utilized a rule-based approach to detect skin regions. The proposed method, proposed embedding the secret data into the integer Wavelet coefficients of the approximation sub-band of the cover image. When compared to the original technique, experimental results showed a lower error percentage between skin maps detected before the embedding and during the extraction processes. This eventually increased the similarity between the original and the retrieved secret image.
2022-05-23
Abdul Manaf, Marlina Bt, Bt Sulaiman, Suziah, Bt Awang Rambli, Dayang Rohaya.  2021.  Immersive and Non-Immersive VR Display using Nature Theme as Therapy in Reducing Work Stress. 2021 International Conference on Computer Information Sciences (ICCOINS). :276–281.
Stress-related disorders are increasing because of work load, forces in teamwork, surroundings pressures and health related conditions. Thus, to avoid people living under heavy stress and develop more severe stress-related disorders, different internet and applications of stress management interventions are offered. Mobile applications with self-assessed health, burnout-scores and well-being are commonly used as outcome measures. Few studies have used sickleave to compare effects of stress interventions. A new approach is to use nature and garden in a multimodal stress management context. This study aimed to explore the effects of immersive and non-immersive games application by using nature theme virtual stress therapy in reducing stress level. Two weeks’ of experiments had involved 18 participants. Nine (9) of them were invited to join the first experiment which focused on immersive virtual reality (VR) experience. Their Blood Volume Pulse with Heart Rate (BVP+HR) and Skin Conductance (SC) were recorded using BioGraph Infiniti Biofeedback System that comes with three (3) sensors attached to the fingers. The second experiment were joined by another nine (9) participants. This experiment was testing on non-immersive desktop control experience. The same protocol measurements were taken which are BVP+HR and SC. Participants were given the experience to feel and get carried into the virtual nature as a therapy so that they will reduce stress. The result of this study points to whether immersive or non-immersive VR display using nature theme virtual therapy would reduce individuals stress level. After conducted series of experiments, results showed that both immersive and non-immersive VR display reduced stress level. However, participants were satisfied of using the immersive version as it provided a 360 degree of viewing, immersed experiences and feeling engaged. Thus, this showed and proved that applications developed with nature theme affect successfully reduce stress level no matter it is put in immersive or non-immersive display.
2022-04-25
Ajoy, Atmik, Mahindrakar, Chethan U, Gowrish, Dhanya, A, Vinay.  2021.  DeepFake Detection using a frame based approach involving CNN. 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA). :1329–1333.
This paper proposes a novel model to detect Deep-Fakes, which are hyper-realistic fake videos generated by advanced AI algorithms involving facial superimposition. With a growing number of DeepFakes involving prominent political figures that hold a lot of social capital, their misuse can lead to drastic repercussions. These videos can not only be used to circulate false information causing harm to reputations of individuals, companies and countries, but also has the potential to cause civil unrest through mass hysteria. Hence it is of utmost importance to detect these DeepFakes and promptly curb their spread. We therefore propose a CNN-based model that learns inherently distinct patterns that change between a DeepFake and a real video. These distinct features include pixel distortion, inconsistencies with facial superimposition, skin colour differences, blurring and other visual artifacts. The proposed model has trained a CNN (Convolutional Neural Network), to effectively distinguish DeepFake videos using a frame-based approach based on aforementioned distinct features. Herein, the proposed work demonstrates the viability of our model in effectively identifying Deepfake faces in a given video source, so as to aid security applications employed by social-media platforms in credibly tackling the ever growing threat of Deepfakes, by effectively gauging the authenticity of videos, so that they may be flagged or ousted before they can cause irreparable harm.
2021-11-29
Patel, Kumud, Agrahari, Sudhanshu, Srivastava, Saijshree.  2020.  Survey on Fake Profile Detection on Social Sites by Using Machine Learning Algorithm. 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :1236–1240.
To avoid the spam message, malicious and cyber bullies activities which are mostly done by the fake profile. These activities challenge the privacy policies of the social network communities. These fake profiles are responsible for spread false information on social communities. To identify the fake profile, duplicate, spam and bots account there is much research work done in this area. By using a machine-learning algorithm, most of the fake accounts detected successfully. This paper represents the review of Fake Profile Detection on Social Site by Using Machine Learning.
2021-03-29
Juyal, S., Sharma, S., Harbola, A., Shukla, A. S..  2020.  Privacy and Security of IoT based Skin Monitoring System using Blockchain Approach. 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT). :1—5.

Remote patient monitoring is a system that focuses on patients care and attention with the advent of the Internet of Things (IoT). The technology makes it easier to track distance, but also to diagnose and provide critical attention and service on demand so that billions of people are safer and more safe. Skincare monitoring is one of the growing fields of medical care which requires IoT monitoring, because there is an increasing number of patients, but cures are restricted to the number of available dermatologists. The IoT-based skin monitoring system produces and store volumes of private medical data at the cloud from which the skin experts can access it at remote locations. Such large-scale data are highly vulnerable and otherwise have catastrophic results for privacy and security mechanisms. Medical organizations currently do not concentrate much on maintaining safety and privacy, which are of major importance in the field. This paper provides an IoT based skin surveillance system based on a blockchain data protection and safety mechanism. A secure data transmission mechanism for IoT devices used in a distributed architecture is proposed. Privacy is assured through a unique key to identify each user when he registers. The principle of blockchain also addresses security issues through the generation of hash functions on every transaction variable. We use blockchain consortiums that meet our criteria in a decentralized environment for controlled access. The solutions proposed allow IoT based skin surveillance systems to privately and securely store and share medical data over the network without disturbance.

Alamri, M., Mahmoodi, S..  2020.  Facial Profiles Recognition Using Comparative Facial Soft Biometrics. 2020 International Conference of the Biometrics Special Interest Group (BIOSIG). :1—4.

This study extends previous advances in soft biometrics and describes to what extent soft biometrics can be used for facial profile recognition. The purpose of this research is to explore human recognition based on facial profiles in a comparative setting based on soft biometrics. Moreover, in this work, we describe and use a ranking system to determine the recognition rate. The Elo rating system is employed to rank subjects by using their face profiles in a comparative setting. The crucial features responsible for providing useful information describing facial profiles have been identified by using relative methods. Experiments based on a subset of the XM2VTSDB database demonstrate a 96% for recognition rate using 33 features over 50 subjects.

2021-02-01
Gupta, K., Hajika, R., Pai, Y. S., Duenser, A., Lochner, M., Billinghurst, M..  2020.  Measuring Human Trust in a Virtual Assistant using Physiological Sensing in Virtual Reality. 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). :756–765.
With the advancement of Artificial Intelligence technology to make smart devices, understanding how humans develop trust in virtual agents is emerging as a critical research field. Through our research, we report on a novel methodology to investigate user's trust in auditory assistance in a Virtual Reality (VR) based search task, under both high and low cognitive load and under varying levels of agent accuracy. We collected physiological sensor data such as electroencephalography (EEG), galvanic skin response (GSR), and heart-rate variability (HRV), subjective data through questionnaire such as System Trust Scale (STS), Subjective Mental Effort Questionnaire (SMEQ) and NASA-TLX. We also collected a behavioral measure of trust (congruency of users' head motion in response to valid/ invalid verbal advice from the agent). Our results indicate that our custom VR environment enables researchers to measure and understand human trust in virtual agents using the matrices, and both cognitive load and agent accuracy play an important role in trust formation. We discuss the implications of the research and directions for future work.
2020-12-11
Mikołajczyk, A., Grochowski, M..  2019.  Style transfer-based image synthesis as an efficient regularization technique in deep learning. 2019 24th International Conference on Methods and Models in Automation and Robotics (MMAR). :42—47.

These days deep learning is the fastest-growing area in the field of Machine Learning. Convolutional Neural Networks are currently the main tool used for the image analysis and classification purposes. Although great achievements and perspectives, deep neural networks and accompanying learning algorithms have some relevant challenges to tackle. In this paper, we have focused on the most frequently mentioned problem in the field of machine learning, that is relatively poor generalization abilities. Partial remedies for this are regularization techniques e.g. dropout, batch normalization, weight decay, transfer learning, early stopping and data augmentation. In this paper we have focused on data augmentation. We propose to use a method based on a neural style transfer, which allows to generate new unlabeled images of high perceptual quality that combine the content of a base image with the appearance of another one. In a proposed approach, the newly created images are described with pseudo-labels, and then used as a training dataset. Real, labeled images are divided into the validation and test set. We validated proposed method on a challenging skin lesion classification case study. Four representative neural architectures are examined. Obtained results show the strong potential of the proposed approach.

2020-11-17
Nasim, I., Kim, S..  2019.  Human EMF Exposure in Wearable Networks for Internet of Battlefield Things. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :1—6.

Numerous antenna design approaches for wearable applications have been investigated in the literature. As on-body wearable communications become more ingrained in our daily activities, the necessity to investigate the impacts of these networks burgeons as a major requirement. In this study, we investigate the human electromagnetic field (EMF) exposure effect from on-body wearable devices at 2.4 GHz and 60 GHz, and compare the results to illustrate how the technology evolution to higher frequencies from wearable communications can impact our health. Our results suggest the average specific absorption rate (SAR) at 60 GHz can exceed the regulatory guidelines within a certain separation distance between a wearable device and the human skin surface. To the best of authors' knowledge, this is the first work that explicitly compares the human EMF exposure at different operating frequencies for on-body wearable communications, which provides a direct roadmap in design of wearable devices to be deployed in the Internet of Battlefield Things (IoBT).

2017-03-08
Prinosil, J., Krupka, A., Riha, K., Dutta, M. K., Singh, A..  2015.  Automatic hair color de-identification. 2015 International Conference on Green Computing and Internet of Things (ICGCIoT). :732–736.

A process of de-identification used for privacy protection in multimedia content should be applied not only for primary biometric traits (face, voice) but for soft biometric traits as well. This paper deals with a proposal of the automatic hair color de-identification method working with video records. The method involves image hair area segmentation, basic hair color recognition, and modification of hair color for real-looking de-identified images.

Xu, W., Cheung, S. c S., Soares, N..  2015.  Affect-preserving privacy protection of video. 2015 IEEE International Conference on Image Processing (ICIP). :158–162.

The prevalence of wireless networks and the convenience of mobile cameras enable many new video applications other than security and entertainment. From behavioral diagnosis to wellness monitoring, cameras are increasing used for observations in various educational and medical settings. Videos collected for such applications are considered protected health information under privacy laws in many countries. At the same time, there is an increasing need to share such video data across a wide spectrum of stakeholders including professionals, therapists and families facing similar challenges. Visual privacy protection techniques, such as blurring or object removal, can be used to mitigate privacy concern, but they also obliterate important visual cues of affect and social behaviors that are crucial for the target applications. In this paper, we propose a method of manipulating facial expression and body shape to conceal the identity of individuals while preserving the underlying affect states. The experiment results demonstrate the effectiveness of our method.

Gómez-Valverde, J. J., Ortuño, J. E., Guerra, P., Hermann, B., Zabihian, B., Rubio-Guivernau, J. L., Santos, A., Drexler, W., Ledesma-Carbayo, M. J..  2015.  Evaluation of speckle reduction with denoising filtering in optical coherence tomography for dermatology. 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI). :494–497.

Optical Coherence Tomography (OCT) has shown a great potential as a complementary imaging tool in the diagnosis of skin diseases. Speckle noise is the most prominent artifact present in OCT images and could limit the interpretation and detection capabilities. In this work we evaluate various denoising filters with high edge-preserving potential for the reduction of speckle noise in 256 dermatological OCT B-scans. Our results show that the Enhanced Sigma Filter and the Block Matching 3-D (BM3D) as 2D denoising filters and the Wavelet Multiframe algorithm considering adjacent B-scans achieved the best results in terms of the enhancement quality metrics used. Our results suggest that a combination of 2D filtering followed by a wavelet based compounding algorithm may significantly reduce speckle, increasing signal-to-noise and contrast-to-noise ratios, without the need of extra acquisitions of the same frame.

2015-05-05
Raut, R.D., Kulkarni, S., Gharat, N.N..  2014.  Biometric Authentication Using Kekre's Wavelet Transform. Electronic Systems, Signal Processing and Computing Technologies (ICESC), 2014 International Conference on. :99-104.

This paper proposes an enhanced method for personal authentication based on finger Knuckle Print using Kekre's wavelet transform (KWT). Finger-knuckle-print (FKP) is the inherent skin patterns of the outer surface around the phalangeal joint of one's finger. It is highly discriminable and unique which makes it an emerging promising biometric identifier. Kekre's wavelet transform is constructed from Kekre's transform. The proposed system is evaluated on prepared FKP database that involves all categories of FKP. The total database of 500 samples of FKP. This paper focuses the different image enhancement techniques for the pre-processing of the captured images. The proposed algorithm is examined on 350 training and 150 testing samples of database and shows that the quality of database and pre-processing techniques plays important role to recognize the individual. The experimental result calculate the performance parameters like false acceptance rate (FAR), false rejection rate (FRR), True Acceptance rate (TAR), True rejection rate (TRR). The tested result demonstrated the improvement in EER (Error Equal Rate) which is very much important for authentication. The experimental result using Kekre's algorithm along with image enhancement shows that the finger knuckle recognition rate is better than the conventional method.
 

2015-05-04
Severin, F., Baradarani, A., Taylor, J., Zhelnakov, S., Maev, R..  2014.  Auto-adjustment of image produced by multi-transducer ultrasonic system. Ultrasonics Symposium (IUS), 2014 IEEE International. :1944-1947.

Acoustic microscopy is characterized by relatively long scanning time, which is required for the motion of the transducer over the entire scanning area. This time may be reduced by using a multi-channel acoustical system which has several identical transducers arranged as an array and is mounted on a mechanical scanner so that each transducer scans only a fraction of the total area. The resulting image is formed as a combination of all acquired partial data sets. The mechanical instability of the scanner, as well as the difference in parameters of the individual transducers causes a misalignment of the image fractures. This distortion may be partially compensated for by the introduction of constant or dynamical signal leveling and data shift procedures. However, a reduction of the random instability component requires more advanced algorithms, including auto-adjustment of processing parameters. The described procedure was implemented into the prototype of an ultrasonic fingerprint reading system. The specialized cylindrical scanner provides a helical spiral lens trajectory which eliminates repeatable acceleration, reduces vibration and allows constant data flow on maximal rate. It is equipped with an array of four spherically focused 50 MHz acoustic lenses operating in pulse-echo mode. Each transducer is connected to a separate channel including pulser, receiver and digitizer. The output 3D data volume contains interlaced B-scans coming from each channel. Afterward, data processing includes pre-determined procedures of constant layer shift in order to compensate for the transducer displacement, phase shift and amplitude leveling for compensation of variation in transducer characteristics. Analysis of statistical parameters of individual scans allows adaptive eliminating of the axial misalignment and mechanical vibrations. Further 2D correlation of overlapping partial C-scans will realize an interpolative adjustment which essentially improves the output image. Implementation of this adaptive algorithm into a data processing sequence allows us to significantly reduce misreading due to hardware noise and finger motion during scanning. The system provides a high quality acoustic image of the fingerprint including different levels of information: fingerprint pattern, sweat porous locations, internal dermis structures. These additional features can effectively facilitate fingerprint based identification. The developed principles and algorithm implementations allow improved quality, stability and reliability of acoustical data obtained with the mechanical scanner, accommodating several transducers. General principles developed during this work can be applied to other configurations of advanced ultrasonic systems designed for various biomedical and NDE applications. The data processing algorithm, developed for a specific biometric task, can be adapted for the compensation of mechanical imperfections of the other devices.