Biblio
Most of the authentication protocols assume the existence of a Trusted Third Party (TTP) in the form of a Certificate Authority or as an authentication server. The main objective of this research is to present an autonomous solution where users could store their credentials, without depending on TTPs. For this, the use of an autonomous network is imperative, where users could use their uniqueness in order to identify themselves. We propose the framework “Three Blockchains Identity Management with Elliptic Curve Cryptography (3BI-ECC)”. Our proposed framework is a decentralize identity management system where users' identities are self-generated.
Single sign-on (SSO) becomes popular as the identity management and authentication infrastructure in the Internet. A user receives an SSO ticket after being authenticated by the identity provider (IdP), and this IdP-issued ticket enables him to sign onto the relying party (RP). However, there are vulnerabilities (e.g., Golden SAML) that allow attackers to arbitrarily issue SSO tickets and then sign onto any RP on behalf of any user. Meanwhile, several incidents of certification authorities (CAs) also indicate that the trusted third party of security services is not so trustworthy as expected, and fraudulent TLS server certificates are signed by compromised or deceived CAs to launch TLS man-in-the-middle attacks. Various approaches are then proposed to tame the absolute authority of (compromised) CAs, to detect or prevent fraudulent TLS server certificates in the TLS handshakes. The trust model of SSO services is similar to that of certificate services. So this paper investigates the defense strategies of these trust-enhancements of certificate services, and attempts to apply these strategies to SSO to derive the trust-enhancements applicable in the SSO services. Our analysis derives (a) some security designs which have been commonly-used in the SSO services or non-SSO authentication services, and (b) two schemes effectively improving the trustworthiness of SSO services, which are not widely discussed or adopted.
In the smart grid, residents' electricity usage needs to be periodically measured and reported for the purpose of better energy management. At the same time, real-time collection of residents' electricity consumption may unfavorably incur privacy leakage, which has motivated the research on privacy-preserving aggregation of electricity readings. Most previous studies either rely on a trusted third party (TTP) or suffer from expensive computation. In this paper, we first reveal the privacy flaws of a very recent scheme pursing privacy preservation without relying on the TTP. By presenting concrete attacks, we show that this scheme has failed to meet the design goals. Then, for better privacy protection, we construct a new scheme called PMDA, which utilizes Shamir's secret sharing to allow smart meters to negotiate aggregation parameters in the absence of a TTP. Using only lightweight cryptography, PMDA efficiently supports multi-functional aggregation of the electricity readings, and simultaneously preserves residents' privacy. Theoretical analysis is provided with regard to PMDA's security and efficiency. Moreover, experimental data obtained from a prototype indicates that our proposal is efficient and feasible for practical deployment.
Dynamic spectrum sharing techniques applied in the UHF TV band have been developed to allow secondary WiFi transmission in areas with active TV users. This technique of dynamically controlling the exclusion zone enables vastly increasing secondary spectrum re-use, compared to the "TV white space" model where TV transmitters determine the exclusion zone and only "idle" channels can be re-purposed. However, in current such dynamic spectrum sharing systems, the sensitive operation parameters of both primary TV users (PUs) and secondary users (SUs) need to be shared with the spectrum database controller (SDC) for the purpose of realizing efficient spectrum allocation. Since such SDC server is not necessarily operated by a trusted third party, those current systems might cause essential threatens to the privacy requirement from both PUs and SUs. To address this privacy issue, this paper proposes a privacy-preserving spectrum sharing system between PUs and SUs, which realizes the spectrum allocation decision process using efficient multi-party computation (MPC) technique. In this design, the SDC only performs secure computation over encrypted input from PUs and SUs such that none of the PU or SU operation parameters will be revealed to SDC. The evaluation of its performance illustrates that our proposed system based on efficient MPC techniques can perform dynamic spectrum allocation process between PUs and SUs efficiently while preserving users' privacy.
In this paper, we propose a lightweight multi-receiver encryption scheme for the device to device communications on Internet of Things (IoT) applications. In order for the individual user to control the disclosure range of his/her own data directly and to prevent sensitive personal data disclosure to the trusted third party, the proposed scheme uses device-generated public keys. For mutual authentication, third party generates Schnorr-like lightweight identity-based partial private keys for users. The proposed scheme provides source authentication, message integrity, replay-attack prevention and implicit user authentication. In addition to more security properties, computation expensive pairing operations are eliminated to achieve less time usage for both sender and receiver, which is favourable property for IoT applications. In this paper, we showed a proof of security of our scheme, computational cost comparison and experimental performance evaluations. We implemented our proposed scheme on real embedded Android devices and confirmed that it achieves less time cost for both encryption and decryption comparing with the existing most efficient certificate-based multi-receiver encryption scheme and certificateless multi-receiver encryption scheme.
Cloud computing is becoming the main computing model in the future due to its advantages such as high resource utilization rate and save high cost of performance. The public environments is become necessary to secure their storage and transmission against possible attacks such as known-plain-text attack and semantic security. How to ensure the data security and the privacy preserving, however, becomes a huge obstacle to its development. The traditional way to solve Secure Multiparty Computation (SMC) problem is using Trusted Third Party (TTP), however, TTPs are particularly hard to achieve and compute complexity. To protect user's privacy data, the encrypted outsourcing data are generally stored and processed in cloud computing by applying homomorphic encryption. According to above situation, we propose Elliptic Curve Cryptography (ECC) based homomorphic encryption scheme for SMC problem that is dramatically reduced computation and communication cost. It shows that the scheme has advantages in energy consumption, communication consumption and privacy protection through the comparison experiment between ECC based homomorphic encryption and RSA&Paillier encryption algorithm. Further evidence, the scheme of homomorphic encryption scheme based on ECC is applied to the calculation of GPS data of the earthquake and prove it is proved that the scheme is feasible, excellent encryption effect and high security.
In this study, the trusted third party (TTP) in Australia's B2C marketplace is studied and the factors influencing consumers' trust behaviour are examined from the perspective of consumers' online trust. Based on the literature review and combined with the development status and background of Australia's e-commerce, underpinned by the Theory of Planned Behaviour (TPB) and a conceptual trust model, this paper expatiates the specific factors and influence mechanism of TTP on consumers' trust behaviour. Also this paper explains two different functions of TTP to solve the online trust problem faced by consumers. Meanwhile, this paper summarizes five different types of services provided by TTPs during the establishment of the trust relationship. Finally, the present study selects 100 B2C enterprises by the simple random sampling method and makes a detailed analysis of their TTPs, to verify the services and functions of the proposed TTP in the trust model. This study is of some significance for comprehending the influence mechanism, functions and services of TTPs on consumers' trust behaviour in the realistic Australian B2C environment.
Privacy preservation is very essential in various real life applications such as medical science and financial analysis. This paper focuses on implementation of an asymmetric secure multi-party computation protocol using anonymization and public-key encryption where all parties have access to trusted third party (TTP) who (1) doesn't add any contribution to computation (2) doesn't know who is the owner of the input received (3) has large number of resources (4) decryption key is known to trusted third party (TTP) to get the actual input for computation of final result. In this environment, concern is to design a protocol which deploys TTP for computation. It is proposed that the protocol is very proficient (in terms of secure computation and individual privacy) for the parties than the other available protocols. The solution incorporates protocol using asymmetric encryption scheme where any party can encrypt a message with the public key but decryption can be done by only the possessor of the decryption key (private key). As the protocol works on asymmetric encryption and packetization it ensures following: (1) Confidentiality (Anonymity) (2) Security (3) Privacy (Data).
In this paper, we propose a scheme to employ an asymmetric fingerprinting protocol within a client-side embedding distribution framework. The scheme is based on a novel client-side embedding technique that is able to transmit a binary fingerprint. This enables secure distribution of personalized decryption keys containing the Buyer's fingerprint by means of existing asymmetric protocols, without using a trusted third party. Simulation results show that the fingerprint can be reliably recovered by using non-blind decoding, and it is robust with respect to common attacks. The proposed scheme can be a valid solution to both customer's rights and scalability issues in multimedia content distribution.