Biblio
An acoustic fingerprint is a condensed and powerful digital signature of an audio signal which is used for audio sample identification. A fingerprint is the pattern of a voice or audio sample. A large number of algorithms have been developed for generating such acoustic fingerprints. These algorithms facilitate systems that perform song searching, song identification, and song duplication detection. In this study, a comprehensive and powerful survey of already developed algorithms is conducted. Four major music fingerprinting algorithms are evaluated for identifying and analyzing the potential hurdles that can affect their results. Since the background and environmental noise reduces the efficiency of music fingerprinting algorithms, behavioral analysis of fingerprinting algorithms is performed using audio samples of different languages and under different environmental conditions. The results of music fingerprint classification are more successful when deep learning techniques for classification are used. The testing of the acoustic feature modeling and music fingerprinting algorithms is performed using the standard dataset of iKala, MusicBrainz and MIR-1K.
A new dataset is presented composed of music identification matches from Gracenote, a leading global music metadata company. Matches from January 1, 2014 to December 31, 2014 have been curated and made available as a public dataset called Gracenote Music Identification 2014, or GNMID14, at the following address: https://developer.gracenote.com/mid2014. This collection is the first significant music identification dataset and one of the largest music related datasets available containing more than 110M matches in 224 countries for 3M unique tracks, and 509K unique artists. It features geotemporal information (i.e. country and match date), genre and mood metadata. In this paper, we characterize the dataset and demonstrate its utility for Information Retrieval (IR) research.
The Philips audio fingerprint[1] has been used for years, but its robustness against external noise has not been studied accurately. This paper shows the Philips fingerprint is noise resistant, and is capable of recognizing music that is corrupted by noise at a -4 to -7 dB signal to noise ratio. In addition, the drawbacks of the Philips fingerprint are addressed by utilizing a “Power Mask” in conjunction with the Philips fingerprint during the matching process. This Power Mask is a weight matrix given to the fingerprint bits, which allows mismatched bits to be penalized according to their relevance in the fingerprint. The effectiveness of the proposed fingerprint was evaluated by experiments using a database of 1030 songs and 1184 query files that were heavily corrupted by two types of noise at varying levels. Our experiments show the proposed method has significantly improved the noise resistance of the standard Philips fingerprint.