Biblio
Filters: Keyword is nanorods [Clear All Filters]
Synthesis and magnetic properties of Fe-doped CdS nanorods. Micro Nano Letters. 14:275–279.
.
2019. Hexagonal CdS and Fe-doped CdS nanorods were synthesised by a facile hydrothermal method and characterised by X-ray diffraction, energy dispersive X-ray spectroscopy, UV-vis absorption, photoluminescence, and X-ray photoelectron spectroscopy. The magnetic properties of undoped and Fe-doped CdS nanorods were investigated at room temperature. The experimental results demonstrate that the ferromagnetism of the Fe-doped CdS nanorods differs from that of the undoped CdS nanorods. The remanence magnetisation (Mr) and the coercive field (Hc) of the Fe-doped CdS nanorods were 4.9 × 10-3 emu/g and 270.6 Oe, respectively, while photoluminescence properties were not influenced by doping. First-principle calculations show that the ferromagnetism in Fe-doped CdS nanocrystal arose not only from the Fe dopants but also from the Cd vacancies, although the main contribution was due to the Fe dopants.
Development Of Micro-Magnets For The Electromagnetic Transduction Of MEMS. 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems Eurosensors XXXIII (TRANSDUCERS EUROSENSORS XXXIII). :1748–1751.
.
2019. This paper presents a new class of high-performance permanent micro-magnets based on the controlled assembly of cobalt nanorods for the electromagnetic transduction of MEMS. Micromagnets are fabricated using a low temperature fabrication process that yields a dense material exhibiting high coercive field and remanence to saturation magnetization ratio. The cartography of the magnetic induction produced by the sub-millimeter size magnets was obtained using a scanning Hall effect micro-probe microscope. Silicon microcantilevers placed in the vicinity of these magnets were successfully actuated using the Lorentz force with low currents. The good signal to noise ratio measured at resonance demonstrates the potentiality of these nanostructured micro-magnets.