Visible to the public Biblio

Filters: Keyword is neodymium alloys  [Clear All Filters]
2020-11-30
Peng, Y., Yue, M., Li, H., Li, Y., Li, C., Xu, H., Wu, Q., Xi, W..  2018.  The Effect of Easy Axis Deviations on the Magnetization Reversal of Co Nanowire. IEEE Transactions on Magnetics. 54:1–5.
Macroscopic hysteresis loops and microscopic magnetic moment distributions have been determined by 3-D model for Co nanowire with various easy axis deviations from applied field. It is found that both the coercivity and the remanence decrease monotonously with the increase of easy axis deviation as well as the maximum magnetic product, indicating the large impact of the easy axis orientation on the magnetic performance. Moreover, the calculated angular distributions and the evolution of magnetic moments have been shown to explain the magnetic reversal process. It is demonstrated that the large demagnetization field in the two ends of the nanowire makes the occurrence of reversal domain nucleation easier, hence the magnetic reversal. In addition, the magnetic reversal was illustrated in terms of the analysis of the energy evolution.
2020-02-24
Lisec, Thomas, Bodduluri, Mani Teja, Schulz-Walsemann, Arne-Veit, Blohm, Lars, Pieper, Isa, Gu-Stoppel, Shanshan, Niekiel, Florian, Lofink, Fabian, Wagner, Bernhard.  2019.  Integrated High Power Micro Magnets for MEMS Sensors and Actuators. 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems Eurosensors XXXIII (TRANSDUCERS EUROSENSORS XXXIII). :1768–1771.
Back-end-of-line compatible integration of NdFeB-based micro magnets onto 8 inch Si substrates is presented. Substrate conditioning procedures to enable further processing in a cleanroom environment are discussed. It is shown that permanent magnetic structures with lateral dimensions between 25μm and 2000μm and a depth up to 500μm can be fabricated reliably and reproducibly with a remanent magnetization of 340mT at a standard deviation as low as 5% over the substrate. To illustrate post-processing capabilities, the fabrication of micro magnet arrangements embedded in silicon frames is described.