Biblio
Steganography is a data hiding technique, which is generally used to hide the data within a file to avoid detection. It is used in the police department, detective investigation, and medical fields as well as in many more fields. Various techniques have been proposed over the years for Image Steganography and also attackers or hackers have developed many decoding tools to break these techniques to retrieve data. In this paper, CAPTCHA codes are used to ensure that the receiver is the intended receiver and not any machine. Here a randomized CAPTCHA code is created to provide additional security to communicate with the authenticated user and used Image Steganography to achieve confidentiality. For achieving secret and reliable communication, encryption and decryption mechanism is performed; hence a machine cannot decode it using any predefined algorithm. Once a secure connection has been established with the intended receiver, the original message is transmitted using the LSB algorithm, which uses the RGB color spectrum to hide the image data ensuring additional encryption.
This paper proposes a steganography method using the digital images. Here, we are embedding the data which is to be secured into the digital image. Human Visual System proved that the changes in the image edges are insensitive to human eyes. Therefore we are using edge detection method in steganography to increase data hiding capacity by embedding more data in these edge pixels. So, if we can increase number of edge pixels, we can increase the amount of data that can be hidden in the image. To increase the number of edge pixels, multiple edge detection is employed. Edge detection is carried out using more sophisticated operator like canny operator. To compensate for the resulting decrease in the PSNR because of increase in the amount of data hidden, Minimum Error Replacement [MER] method is used. Therefore, the main goal of image steganography i.e. security with highest embedding capacity and good visual qualities are achieved. To extract the data we need the original image and the embedding ratio. Extraction is done by taking multiple edges detecting the original image and the data is extracted corresponding to the embedding ratio.
This paper proposes an advanced scheme of message security in 3D cover images using multiple layers of security. Cryptography using AES-256 is implemented in the first layer. In the second layer, edge detection is applied. Finally, LSB steganography is executed in the third layer. The efficiency of the proposed scheme is measured using a number of performance metrics. For instance, mean square error (MSE), peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), mean absolute error (MAE) and entropy.
In our daily lives, the advances of new technology can be used to sustain the development of people across the globe. Particularly, e-government can be the dynamo of the development for the people. The development of technology and the rapid growth in the use of internet creates a big challenge in the administration in both the public and the private sector. E-government is a vital accomplishment, whereas the security is the main downside which occurs in each e-government process. E-government has to be secure as technology grows and the users have to follow the procedures to make their own transactions safe. This paper tackles the challenges and obstacles to enhance the security of information in e-government. Hence to achieve security data hiding techniques are found to be trustworthy. Reversible data hiding (RDH) is an emerging technique which helps in retaining the quality of the cover image. Hence it is preferred over the traditional data hiding techniques. Modification in the existing algorithm is performed for image encryption scheme and data hiding scheme in order to improve the results. To achieve this secret data is split into 20 parts and data concealing is performed on each part. The data hiding procedure includes embedding of data into least significant nibble of the cover image. The bits are further equally distributed in the cover image to obtain the key security parameters. Hence the obtained results validate that the proposed scheme is better than the existing schemes.
Technology development has led to rapid increase in demands for multimedia applications. Due to this demand, digital archives are increasingly used to store these multimedia contents. Cloud is the commonly used archive to store, transmit, receive and share multimedia contents. Cloud makes use of internet to perform these tasks due to which data becomes more prone to attacks. Data security and privacy are compromised. This can be avoided by limiting data access to authenticated users and by hiding the data from cloud services that cannot be trusted. Hiding data from the cloud services involves encrypting the data before storing it into the cloud. Data to be shared with other users can be encrypted by utilizing Cipher Text-Policy Attribute Based Encryption (CP-ABE). CP-ABE is used which is a cryptographic technique that controls access to the encrypted data. The pairing-based computation based on bilinearity is used in ABE due to which the requirements for resources like memory and power supply increases rapidly. Most of the devices that we use today have limited memory. Therefore, an efficient pairing free CP- ABE access control scheme using elliptic curve cryptography has been used. Pairing based computation is replaced with scalar product on elliptic curves that reduces the necessary memory and resource requirements for the users. Even though pairing free CP-ABE is used, it is easier to retrieve the plaintext of a secret message if cryptanalysis is used. Therefore, this paper proposes to combine cryptography with steganography in such a way by embedding crypto text into an image to provide increased level of data security and data ownership for sub-optimal multimedia applications. It makes it harder for a cryptanalyst to retrieve the plaintext of a secret message from a stego-object if steganalysis were not used. This scheme significantly improved the data security as well as data privacy.
Chinese Remainder Theorem (CRT) is one of the spatial domain methods that is more implemented in the data hiding method watermarking. CRT is used to improve security and imperceptibility in the watermarking method. CRT is rarely studied in studies that discuss steganographic images. Steganography research focuses more on increasing imperceptibility, embedded payload, and message security, so methods like LSB are still popular to be developed to date. CRT and LSB have some similarities such as default payload capacity and both are methods in the spatial domain which can produce good imperceptibility quality of stego image. But CRT is very superior in terms of security, so CRT is also widely used in cryptographic algorithms. Some ways to increase imperceptibility in image steganography are edge detection and spread spectrum embedding. This research proposes a combination of edge detection techniques and spread-spectrum embedding based on the CRT method to produce imperceptibility and safe image steganography method. Based on the test results it is proven that the combination of the proposed methods can increase imperceptibility of CRT-based steganography based on SSIM metric.