Visible to the public Biblio

Found 147 results

Filters: Keyword is steganography  [Clear All Filters]
2019-02-22
Pevny, Tomas, Ker, Andrew D..  2018.  Exploring Non-Additive Distortion in Steganography. Proceedings of the 6th ACM Workshop on Information Hiding and Multimedia Security. :109-114.

Leading steganography systems make use of the Syndrome-Trellis Code (STC) algorithm to minimize a distortion function while encoding the desired payload, but this constrains the distortion function to be additive. The Gibbs Embedding algorithm works for a certain class of non-additive distortion functions, but has its own limitations and is highly complex. In this short paper we show that it is possible to modify the STC algorithm in a simple way, to minimize a non-additive distortion function suboptimally. We use it for two examples. First, applying it to the S-UNIWARD distortion function, we show that it does indeed reduce distortion, compared with minimizing the additive approximation currently used in image steganography, but that it makes the payload more – not less – detectable. This parallels research attempting to use Gibbs Embedding for the same task. Second, we apply it to distortion defined by the output of a specific detector, as a counter-move in the steganography game. However, unless the Warden is forced to move first (by fixing the detector) this is highly detectable.

Steinebach, Martin, Ester, Andre, Liu, Huajian, Zmuzinksi, Sascha.  2018.  Double Embedding Steganalysis: Steganalysis with Low False Positive Rate. Proceedings of the 2Nd International Workshop on Multimedia Privacy and Security. :38-47.

The rise of social networks during the last 10 years has created a situation in which up to 100 million new images and photographs are uploaded and shared by users every day. This environment poses a ideal background for those who wish to communicate covertly by the use of steganography. It also creates a new set of challenges for steganalysts, who have to shift their field of work away from a purely scientific laboratory environment and into a diverse real-world scenario, while at the same time having to deal with entirely new problems, such as the detection of steganographic channels or the impact that even a low false positive rate has when investigating the millions of images which are shared every day on social networks. We evaluate how to address these challenges with traditional steganographic and statistical methods, rather then using high performance computing and machine learning. By the double embedding attack on the well-known F5 steganographic algorithm we achieve a false positive rate well below known attacks.

Steinebach, Martin, Ester, Andre, Liu, Huajian.  2018.  Channel Steganalysis. Proceedings of the 13th International Conference on Availability, Reliability and Security. :9:1-9:8.

The rise of social networks during the last 10 years has created a situation in which up to 100 million new images and photographs are uploaded and shared by users every day. This environment poses an ideal background for those who wish to communicate covertly by the use of steganography. It also creates a new set of challenges for steganalysts, who have to shift their field of work away from a purely scientific laboratory environment and into a diverse real-world scenario, while at the same time having to deal with entirely new problems, such as the detection of steganographic channels or the impact that even a low false positive rate has when investigating the millions of images which are shared every day on social networks. We evaluate how to address these challenges with traditional steganographic and statistical methods, rather then using high performance computing and machine learning. To achieve this we first analyze the steganographic algorithm F5 applied to images with a high degree of diversity, as would be seen in a typical social network. We show that the biggest challenge lies in the detection of images whose payload is less then 50% of the available capacity of an image. We suggest new detection methods and apply these to the problem of channel detection in social network. We are able to show that using our attacks we are able to detect the majority of covert F5 channels after a mix containing 10 stego images has been classified by our scheme.

2019-02-08
Zhang, Yiwei, Zhang, Weiming, Chen, Kejiang, Liu, Jiayang, Liu, Yujia, Yu, Nenghai.  2018.  Adversarial Examples Against Deep Neural Network Based Steganalysis. Proceedings of the 6th ACM Workshop on Information Hiding and Multimedia Security. :67-72.

Deep neural network based steganalysis has developed rapidly in recent years, which poses a challenge to the security of steganography. However, there is no steganography method that can effectively resist the neural networks for steganalysis at present. In this paper, we propose a new strategy that constructs enhanced covers against neural networks with the technique of adversarial examples. The enhanced covers and their corresponding stegos are most likely to be judged as covers by the networks. Besides, we use both deep neural network based steganalysis and high-dimensional feature classifiers to evaluate the performance of steganography and propose a new comprehensive security criterion. We also make a tradeoff between the two analysis systems and improve the comprehensive security. The effectiveness of the proposed scheme is verified with the evidence obtained from the experiments on the BOSSbase using the steganography algorithm of WOW and popular steganalyzers with rich models and three state-of-the-art neural networks.

2019-01-31
Roy, Subhajit, Mukherjee, Srilekha, Sanyal, Goutam.  2018.  Video Steganography Using Karhunen-LoÈVe Transform. Proceedings of the 2Nd International Conference on Digital Signal Processing. :142–146.

Steganography is the art and science of message hiding i.e. passing confidential message through the unsecure channel in such a way that the existence of secret message is unknown. Image and video are the very popular choice for cover media. Embedding efficiency, payload and robustness against attackers are the main key point to successfully design a steganography algorithm. Current steganography algorithm are lacking behind by preprocessing stage, which includes alteration procedure for both cover media and secret message. We address this problem by proposing a novel method to encode the secret image inside the cover video. Here we use Karhunen-Loeve Transform (KL transform), since it provides the image compression and then after we use our proposed algorithm to embed the secret image on that compact zone. The experimental results show higher data embedding capacity and decode the secret image effectively.

2018-11-19
Yildiz, O., Gulbahar, B..  2018.  FoVLC: Foveation Based Data Hiding in Display Transmitters for Visible Light Communications. 2018 14th International Wireless Communications Mobile Computing Conference (IWCMC). :629–635.

Visible light communications is an emerging architecture with unlicensed and huge bandwidth resources, security, and experimental implementations and standardization efforts. Display based transmitter and camera based receiver architectures are alternatives for device-to-device (D2D) and home area networking (HAN) systems by utilizing widely available TV, tablet and mobile phone screens as transmitters while commercially available cameras as receivers. Current architectures utilizing data hiding and unobtrusive steganography methods promise data transmission without user distraction on the screen. however, current architectures have challenges with the limited capability of data hiding in translucency or color shift based methods of hiding by uniformly distributing modulation throughout the screen and keeping eye discomfort at an acceptable level. In this article, foveation property of human visual system is utilized to define a novel modulation method denoted by FoVLC which adaptively improves data hiding capability throughout the screen based on the current eye focus point of viewer. Theoretical modeling of modulation and demodulation mechanisms hiding data in color shifts of pixel blocks is provided while experiments are performed for both FoVLC method and uniform data hiding denoted as conventional method. Experimental tests for the simple design as a proof of concept decreases average bit error rate (BER) to approximately half of the value obtained with the conventional method without user distraction while promising future efforts for optimizing block sizes and utilizing error correction codes.

2018-05-01
Cogranne, R., Sedighi, V., Fridrich, J..  2017.  Practical Strategies for Content-Adaptive Batch Steganography and Pooled Steganalysis. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :2122–2126.

This paper investigates practical strategies for distributing payload across images with content-adaptive steganography and for pooling outputs of a single-image detector for steganalysis. Adopting a statistical model for the detector's output, the steganographer minimizes the power of the most powerful detector of an omniscient Warden, while the Warden, informed by the payload spreading strategy, detects with the likelihood ratio test in the form of a matched filter. Experimental results with state-of-the-art content-adaptive additive embedding schemes and rich models are included to show the relevance of the results.

Al-Salhi, Y. E. A., Lu, S..  2017.  New Steganography Scheme to Conceal a Large Amount of Secret Messages Using an Improved-AMBTC Algorithm Based on Hybrid Adaptive Neural Networks. 2017 Ieee 3rd International Conference on Big Data Security on Cloud (Bigdatasecurity), Ieee International Conference on High Performance and Smart Computing (Hpsc), and Ieee International Conference on Intelligent Data and Security (Ids). :112–121.

The term steganography was used to conceal thesecret message into other media file. In this paper, a novel imagesteganography is proposed, based on adaptive neural networkswith recycling the Improved Absolute Moment Block TruncationCoding algorithm, and by employing the enhanced five edgedetection operators with an optimal target of the ANNS. Wepropose a new scheme of an image concealing using hybridadaptive neural networks based on I-AMBTC method by thehelp of two approaches, the relevant edge detection operators andimage compression methods. Despite that, many processes in ourscheme are used, but still the quality of concealed image lookinggood according to the HVS and PVD systems. The final simulationresults are discussed and compared with another related researchworks related to the image steganography system.

Lehner, F., Mazurczyk, W., Keller, J., Wendzel, S..  2017.  Inter-Protocol Steganography for Real-Time Services and Its Detection Using Traffic Coloring Approach. 2017 IEEE 42nd Conference on Local Computer Networks (LCN). :78–85.

Due to improvements in defensive systems, network threats are becoming increasingly sophisticated and complex as cybercriminals are using various methods to cloak their actions. This, among others, includes the application of network steganography e.g. to hide the communication between an infected host and a malicious control server by embedding commands into innocent-looking traffic. Currently, a new subtype of such methods called inter-protocol steganography emerged. It utilizes relationships between two or more overt protocols to hide data. In this paper, we present new inter-protocol hiding techniques which are suitable for real-time services. Afterwards, we introduce and present preliminary results of a novel steganography detection approach which relies on network traffic coloring.

Erdem, Ö, Turan, M..  2017.  A Case Study for Automatic Detection of Steganographic Images in Network Traffic. 2017 10th International Conference on Electrical and Electronics Engineering (ELECO). :885–889.

Detection and prevention of data breaches in corporate networks is one of the most important security problems of today's world. The techniques and applications proposed for solution are not successful when attackers attempt to steal data using steganography. Steganography is the art of storing data in a file called cover, such as picture, sound and video. The concealed data cannot be directly recognized in the cover. Steganalysis is the process of revealing the presence of embedded messages in these files. There are many statistical and signature based steganalysis algorithms. In this work, the detection of steganographic images with steganalysis techniques is reviewed and a system has been developed which automatically detects steganographic images in network traffic by using open source tools.

Zhao, H., Ren, J., Pei, Z., Cai, Z., Dai, Q., Wei, W..  2017.  Compressive Sensing Based Feature Residual for Image Steganalysis Detection. 2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). :1096–1100.

Based on the feature analysis of image content, this paper proposes a novel steganalytic method for grayscale images in spatial domain. In this work, we firstly investigates directional lifting wavelet transform (DLWT) as a sparse representation in compressive sensing (CS) domain. Then a block CS (BCS) measurement matrix is designed by using the generalized Gaussian distribution (GGD) model, in which the measurement matrix can be used to sense the DLWT coefficients of images to reflect the feature residual introduced by steganography. Extensive experiments are showed that proposed scheme CS-based is feasible and universal for detecting stegography in spatial domain.

Li, Z., Beugnon, S., Puech, W., Bors, A. G..  2017.  Rethinking the High Capacity 3D Steganography: Increasing Its Resistance to Steganalysis. 2017 IEEE International Conference on Image Processing (ICIP). :510–414.

3D steganography is used in order to embed or hide information into 3D objects without causing visible or machine detectable modifications. In this paper we rethink about a high capacity 3D steganography based on the Hamiltonian path quantization, and increase its resistance to steganalysis. We analyze the parameters that may influence the distortion of a 3D shape as well as the resistance of the steganography to 3D steganalysis. According to the experimental results, the proposed high capacity 3D steganographic method has an increased resistance to steganalysis.

Srinivasan, Avinash, Dong, Hunter, Stavrou, Angelos.  2017.  FROST: Anti-Forensics Digital-Dead-DROp Information Hiding RobuST to Detection & Data Loss with Fault Tolerance. Proceedings of the 12th International Conference on Availability, Reliability and Security. :82:1–82:8.

Covert operations involving clandestine dealings and communication through cryptic and hidden messages have existed since time immemorial. While these do have a negative connotation, they have had their fair share of use in situations and applications beneficial to society in general. A "Dead Drop" is one such method of espionage trade craft used to physically exchange items or information between two individuals using a secret rendezvous point. With a "Dead Drop", to maintain operational security, the exchange itself is asynchronous. Information hiding in the slack space is one modern technique that has been used extensively. Slack space is the unused space within the last block allocated to a stored file. However, hiding in slack space operates under significant constraints with little resilience and fault tolerance. In this paper, we propose FROST – a novel asynchronous "Digital Dead Drop" robust to detection and data loss with tunable fault tolerance. Fault tolerance is a critical attribute of a secure and robust system design. Through extensive validation of FROST prototype implementation on Ubuntu Linux, we confirm the performance and robustness of the proposed digital dead drop to detection and data loss. We verify the recoverability of the secret message under various operating conditions ranging from block corruption and drive de-fragmentation to growing existing files on the target drive.

Boroumand, Mehdi, Fridrich, Jessica.  2017.  Nonlinear Feature Normalization in Steganalysis. Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security. :45–54.

In this paper, we propose a method for normalization of rich feature sets to improve detection accuracy of simple classifiers in steganalysis. It consists of two steps: 1) replacing random subsets of empirical joint probability mass functions (co-occurrences) by their conditional probabilities and 2) applying a non-linear normalization to each element of the feature vector by forcing its marginal distribution over covers to be uniform. We call the first step random conditioning and the second step feature uniformization. When applied to maxSRMd2 features in combination with simple classifiers, we observe a gain in detection accuracy across all tested stego algorithms and payloads. For better insight, we investigate the gain for two image formats. The proposed normalization has a very low computational complexity and does not require any feedback from the stego class.

Neuner, Sebastian, Voyiatzis, Artemios G., Schmiedecker, Martin, Weippl, Edgar R..  2017.  Timestamp Hiccups: Detecting Manipulated Filesystem Timestamps on NTFS. Proceedings of the 12th International Conference on Availability, Reliability and Security. :33:1–33:6.

Redundant capacity in filesystem timestamps is recently proposed in the literature as an effective means for information hiding and data leakage. Here, we evaluate the steganographic capabilities of such channels and propose techniques to aid digital forensics investigation towards identifying and detecting manipulated filesystem timestamps. Our findings indicate that different storage media and interfaces exhibit different timestamp creation patterns. Such differences can be utilized to characterize file source media and increase the analysis capabilities of the incident response process.

Schmidt, Sabine S., Mazurczyk, Wojciech, Keller, Jörg, Caviglione, Luca.  2017.  A New Data-Hiding Approach for IP Telephony Applications with Silence Suppression. Proceedings of the 12th International Conference on Availability, Reliability and Security. :83:1–83:6.

Even if information hiding can be used for licit purposes, it is increasingly exploited by malware to exfiltrate data or to coordinate attacks in a stealthy manner. Therefore, investigating new methods for creating covert channels is fundamental to completely assess the security of the Internet. Since the popularity of the carrier plays a major role, this paper proposes to hide data within VoIP traffic. Specifically, we exploit Voice Activity Detection (VAD), which suspends the transmission during speech pauses to reduce bandwidth requirements. To create the covert channel, our method transforms a VAD-activated VoIP stream into a non-VAD one. Then, hidden information is injected into fake RTP packets generated during silence intervals. Results indicate that steganographically modified VAD-activated VoIP streams offer a good trade-off between stealthiness and steganographic bandwidth.

2018-03-05
Alruban, Abdulrahman, Clarke, Nathan, Li, Fudong, Furnell, Steven.  2017.  Insider Misuse Attribution Using Biometrics. Proceedings of the 12th International Conference on Availability, Reliability and Security. :42:1–42:7.

Insider misuse has become a major risk for many organizations. One of the most common forms of misuses is data leakage. Such threats have turned into a real challenge to overcome and mitigate. Whilst prevention is important, incidents will inevitably occur and as such attribution of the leakage is key to ensuring appropriate recourse. Although digital forensics capability has grown rapidly in the process of analyzing the digital evidences, a key barrier is often being able to associate the evidence back to an individual who leaked the data. Stolen credentials and the Trojan defense are two commonly cited arguments used to complicate the issue of attribution. Furthermore, the use of a digital certificate or user ID would only associate to the account not to the individual. This paper proposes a more proactive model whereby a user's biometric information is transparently captured (during normal interactions) and embedding within the digital objects they interact with (thereby providing a direct link between the last user using any document or object). An investigation into the possibility of embedding individuals' biometric signals into image files is presented, with a particular focus upon the ability to recover the biometric information under varying degrees of modification attack. The experimental results show that even when the watermarked object is significantly modified (e.g. only 25% of the image is available) it is still possible to recover those embedded biometric information.

Tang, Qiang, Yung, Moti.  2017.  Cliptography: Post-Snowden Cryptography. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :2615–2616.

This tutorial will present a systematic overview of \$\backslash$em kleptography\: stealing information subliminally from black-box cryptographic implementations; and \$\backslash$em cliptography\: defending mechanisms that clip the power of kleptographic attacks via specification re-designs (without altering the underlying algorithms). Despite the laudatory history of development of modern cryptography, applying cryptographic tools to reliably provide security and privacy in practice is notoriously difficult. One fundamental practical challenge, guaranteeing security and privacy without explicit trust in the algorithms and implementations that underlie basic security infrastructure, remains. While the dangers of entertaining adversarial implementation of cryptographic primitives seem obvious, the ramifications of such attacks are surprisingly dire: it turns out that – in wide generality – adversarial implementations of cryptographic (both deterministic and randomized) algorithms may leak private information while producing output that is statistically indistinguishable from that of a faithful implementation. Such attacks were formally studied in Kleptography. Snowden revelations has shown us how security and privacy can be lost at a very large scale even when traditional cryptography seems to be used to protect Internet communication, when Kleptography was not taken into consideration. We will first explain how the above-mentioned Kleptographic attacks can be carried out in various settings. We will then introduce several simple but rigorous immunizing strategies that were inspired by folklore practical wisdoms to protect different algorithms from implementation subversion. Those strategies can be applied to ensure security of most of the fundamental cryptographic primitives such as PRG, digital signatures, public key encryptions against kleptographic attacks when they are implemented accordingly. Our new design principles may suggest new standardization methods that help reducing the threats of subverted implementation. We also hope our tutorial to stimulate a community-wise efforts to further tackle the fundamental challenge mentioned at the beginning.

2018-02-21
Lindawati, Siburian, R..  2017.  Steganography implementation on android smartphone using the LSB (least significant bit) to MP3 and WAV audio. 2017 3rd International Conference on Wireless and Telematics (ICWT). :170–174.

The rapid growth of science and technology in the telecommunications world can come up with new ways for some people bent on abusing for threatening information security as hackers, crackers, carder, phreaker and so on. If the information is on the wrong side will result in losses. Information that must be considered is the security of confidential information. Steganography is a method that can be used to hide a message by using digital media. Digital Steganography using digital media as the container vessel such as images, sounds, text, and video. Hidden secret data can also include images, audio, text, and video. In this final audio steganography implemented. One method that can be used in steganography is the Least Significant Bit (LSB). Steganography implementation will be accompanied by the application of cryptography in the form of encryption and decryption. This method works is messages that have been encrypted beforehand will be hidden evenly on each region in MP3 or WAV already divided, with modify / change the LSB of the media container with the bits of information to be hidden. In making the steganography application, the author uses the Java programming language eclipse, because the program is quite easy and can be run in the Android smartphone operating system.

2018-01-23
Hemanth, D. J., Popescu, D. E., Mittal, M., Maheswari, S. U..  2017.  Analysis of wavelet, ridgelet, curvelet and bandelet transforms for QR code based image steganography. 2017 14th International Conference on Engineering of Modern Electric Systems (EMES). :121–126.

Transform based image steganography methods are commonly used in security applications. However, the application of several recent transforms for image steganography remains unexplored. This paper presents bit-plane based steganography method using different transforms. In this work, the bit-plane of the transform coefficients is selected to embed the secret message. The characteristics of four transforms used in the steganography have been analyzed and the results of the four transforms are compared. This has been proven in the experimental results.

2017-12-28
Shafee, S., Rajaei, B..  2017.  A secure steganography algorithm using compressive sensing based on HVS feature. 2017 Seventh International Conference on Emerging Security Technologies (EST). :74–78.

Steganography is the science of hiding information to send secret messages using the carrier object known as stego object. Steganographic technology is based on three principles including security, robustness and capacity. In this paper, we present a digital image hidden by using the compressive sensing technology to increase security of stego image based on human visual system features. The results represent which our proposed method provides higher security in comparison with the other presented methods. Bit Correction Rate between original secret message and extracted message is used to show the accuracy of this method.

El-Khamy, S. E., Korany, N. O., El-Sherif, M. H..  2017.  Correlation based highly secure image hiding in audio signals using wavelet decomposition and chaotic maps hopping for 5G multimedia communications. 2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS). :1–3.

Audio Steganography is the technique of hiding any secret information behind a cover audio file without impairing its quality. Data hiding in audio signals has various applications such as secret communications and concealing data that may influence the security and safety of governments and personnel and has possible important applications in 5G communication systems. This paper proposes an efficient secure steganography scheme based on the high correlation between successive audio signals. This is similar to the case of differential pulse coding modulation technique (DPCM) where encoding uses the redundancy in sample values to encode the signals with lower bit rate. Discrete Wavelet Transform (DWT) of audio samples is used to store hidden data in the least important coefficients of Haar transform. We use the benefit of the small differences between successive samples generated from encoding of the cover audio signal wavelet coefficients to hide image data without making a remarkable change in the cover audio signal. instead of changing of actual audio samples so this doesn't perceptually degrade the audio signal and provides higher hiding capacity with lower distortion. To further increase the security of the image hiding process, the image to be hidden is divided into blocks and the bits of each block are XORed with a different random sequence of logistic maps using hopping technique. The performance of the proposed algorithm has been estimated extensively against attacks and experimental results show that the proposed method achieves good robustness and imperceptibility.

2017-12-27
Boyacı, O., Tantuğ, A. C..  2017.  A random number generation method based on discrete time chaotic maps. 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS). :1212–1215.

In this paper a random number generation method based on a piecewise linear one dimensional (PL1D) discrete time chaotic maps is proposed for applications in cryptography and steganography. Appropriate parameters are determined by examining the distribution of underlying chaotic signal and random number generator (RNG) is numerically verified by four fundamental statistical test of FIPS 140-2. Proposed design is practically realized on the field programmable analog and digital arrays (FPAA-FPGA). Finally it is experimentally verified that the presented RNG fulfills the NIST 800-22 randomness test without post processing.

Kar, N., Aman, M. A. A. A., Mandal, K., Bhattacharya, B..  2017.  Chaos-based video steganography. 2017 8th International Conference on Information Technology (ICIT). :482–487.

In this paper a novel data hiding method has been proposed which is based on Non-Linear Feedback Shift Register and Tinkerbell 2D chaotic map. So far, the major work in Steganography using chaotic map has been confined to image steganography where significant restrictions are there to increase payload. In our work, 2D chaotic map and NLFSR are used to developed a video steganography mechanism where data will be embedded in the segregated frames. This will increase the data hiding limit exponentially. Also, embedding position of each frame will be different from others frames which will increase the overall security of the proposed mechanism. We have achieved this randomized data hiding points by using a chaotic map. Basically, Chaotic theory which is non-linear dynamics physics is using in this era in the field of Cryptography and Steganography and because of this theory, little bit changes in initial condition makes the output totally different. So, it is very hard to get embedding position of data without knowing the initial value of the chaotic map.

2017-10-25
Chefranov, Alexander G., Narimani, Amir.  2016.  Participant Authenticating, Error Detecting, and 100% Multiple Errors Repairing Chang-Chen-Wang's Secret Sharing Method Enhancement. Proceedings of the 9th International Conference on Security of Information and Networks. :112–115.

Chang-Chen-Wang's (3,n) Secret grayscale image Sharing between n grayscale cover images method with participant Authentication and damaged pixels Repairing (SSAR) properties is analyzed; it restores the secret image from any three of the cover images used. We show that SSAR may fail, is not able fake participant recognizing, and has limited by 62.5% repairing ability. We propose SSAR (4,n) enhancement, SSAR-E, allowing 100% exact restoration of a corrupted pixel using any four of n covers, and recognizing a fake participant with the help of cryptographic hash functions with 5-bit values that allows better (vs. 4 bits) error detection. Using a special permutation with only one loop including all the secret image pixels, SSAR-E is able restoring all the secret image damaged pixels having just one correct pixel left. SSAR-E allows restoring the secret image to authorized parties only contrary to SSAR. The performance and size of cover images for SSAR-E are the same as for SSAR.