Biblio
This work explores attack and attacker profiles using a VoIP-based Honeypot. We implemented a low interaction honeypot environment to identify the behaviors of the attackers and the services most frequently used. We watched honeypot for 180 days and collected 242.812 events related to FTP, SIP, MSSQL, MySQL, SSH, SMB protocols. The results provide an in-depth analysis about both attacks and attackers profile, their tactics and purposes. It also allows understanding user interaction with a vulnerable honeypot environment.
With the developing understanding of Information Security and digital assets, IT technology has put on tremendous importance of network admission control (NAC). In NAC architecture, admission decisions and resource reservations are taken at edge devices, rather than resources or individual routers within the network. The NAC architecture enables resilient resource reservation, maintaining reservations even after failures and intra-domain rerouting. Admission Control Networks destiny is based on IP networks through its Security and Quality of Service (QoS) demands for real time multimedia application via advance resource reservation techniques. To achieve Security & QoS demands, in real time performance networks, admission control algorithm decides whether the new traffic flow can be admitted to the network or not. Secure allocation of Peer for multimedia traffic flows with required performance is a great challenge in resource reservation schemes. In this paper, we have proposed our model for VoIP networks in order to achieve security services along with QoS, where admission control decisions are taken place at edge routers. We have analyzed and argued that the measurement based admission control should be done at edge routers which employs on-demand probing parallel from both edge routers to secure the source and destination nodes respectively. In order to achieve Security and QoS for a new call, we choose various probe packet sizes for voice and video calls respectively. Similarly a technique is adopted to attain a security allocation approach for selecting an admission control threshold by proposing our admission control algorithm. All results are tested on NS2 based simulation to evalualate the network performance of edge router based upon network admission control in VoIP traffic.
Communication networks can be the targets of organized and distributed attacks such as flooding-type DDOS attack in which malicious users aim to cripple a network server or a network domain. For the attack to have a major effect on the network, malicious users must act in a coordinated and time correlated manner. For instance, the members of the flooding attack increase their message transmission rates rapidly but also synchronously. Even though detection and prevention of the flooding attacks are well studied at network and transport layers, the emergence and wide deployment of new systems such as VoIP (Voice over IP) have turned flooding attacks at the session layer into a new defense challenge. In this study a structured sparsity based group anomaly detection system is proposed that not only can detect synchronized attacks, but also identify the malicious groups from normal users by jointly estimating their members, structure, starting and end points. Although we mainly focus on security on SIP (Session Initiation Protocol) servers/proxies which are widely used for signaling in VoIP systems, the proposed scheme can be easily adapted for any type of communication network system at any layer.
The deployment of Voice over Internet Protocol (VoIP) in place of traditional communication facilities has helped in huge reduction in operating costs, as well as enabled adoption of next generation communication services-based IP. At the same time, cyber criminals have also started intercepting environment and creating challenges for law enforcement system in any Country. At this instant, we propose a framework for the forensic analysis of the VoIP traffic over the network. This includes identifying and analyzing of network patterns of VoIP- SIP which is used for the setting up a session for the communication, and VoIP-RTP which is used for sending the data. Our network forensic investigation framework also focus on developing an efficient packet reordering and reconstruction algorithm for tracing the malicious users involved in conversation. The proposed framework is based on network forensics which can be used for content level observation of VoIP and regenerate original malicious content or session between malicious users for their prosecution in the court.
Skype has been a typical choice for providing VoIP service nowadays and is well-known for its broad range of features, including voice-calls, instant messaging, file transfer and video conferencing, etc. Considering its wide application, from the viewpoint of ISPs, it is essential to identify Skype flows and thus optimize network performance and forecast future needs. However, in general, a host is likely to run multiple network applications simultaneously, which makes it much harder to classify each and every Skype flow from mixed traffic exactly. Especially, current techniques usually focus on host-level identification and do not have the ability to identify Skype traffic at the flow-level. In this paper, we first reveal the unique sequence signatures of Skype UDP flows and then implement a practical online system named SkyTracer for precise Skype traffic identification. To the best of our knowledge, this is the first time to utilize the strong sequence signatures to carry out early identification of Skype traffic. The experimental results show that SkyTracer can achieve very high accuracy at fine-grained level in identifying Skype traffic.
Botnets are the most common vehicle of cyber-criminal activity. They are used for spamming, phishing, denial-of-service attacks, brute-force cracking, stealing private information, and cyber warfare. Botnets carry out network scans for several reasons, including searching for vulnerable machines to infect and recruit into the botnet, probing networks for enumeration or penetration, etc. We present the measurement and analysis of a horizontal scan of the entire IPv4 address space conducted by the Sality botnet in February 2011. This 12-day scan originated from approximately 3 million distinct IP addresses and used a heavily coordinated and unusually covert scanning strategy to try to discover and compromise VoIP-related (SIP server) infrastructure. We observed this event through the UCSD Network Telescope, a /8 darknet continuously receiving large amounts of unsolicited traffic, and we correlate this traffic data with other public sources of data to validate our inferences. Sality is one of the largest botnets ever identified by researchers. Its behavior represents ominous advances in the evolution of modern malware: the use of more sophisticated stealth scanning strategies by millions of coordinated bots, targeting critical voice communications infrastructure. This paper offers a detailed dissection of the botnet's scanning behavior, including general methods to correlate, visualize, and extrapolate botnet behavior across the global Internet.
The paper presents a secure solution that provides VoIP service for mobile users, handling both pre-call and mid-call mobility. Pre-call mobility is implemented using a presence server that acts as a DNS for the moving users. Our approach also detects any change in the attachment point of the moving users and transmits it to the peer entity by in band signaling using socket communications. For true mid-call mobility we also employ buffering techniques that store packets for the duration of the signaling procedure. The solution was implemented for Android devices and it uses ASP technology for the server part.
Mobile Voice over Internet Protocol (mVoIP) applications have gained increasing popularity in the last few years, with millions of users communicating using such applications (e.g. Skype). Similar to other forms of Internet and telecommunications, mVoIP communications are vulnerable to both lawful and unauthorized interceptions. Encryption is a common way of ensuring the privacy of mVoIP users. To the best of our knowledge, there has been no academic study to determine whether mVoIP applications provide encrypted communications. In this paper, we examine Skype and nine other popular mVoIP applications for Android mobile devices, and analyze the intercepted communications to determine whether the captured voice and text communications are encrypted (or not). The results indicate that most of the applications encrypt text communications. However, voice communications may not be encrypted in six of the ten applications examined.