Biblio
Digital identity is the key element of digital transformation in representing any real-world entity in the digital form. To ensure a successful digital future the requirement for an effective digital identity is paramount, especially as demand increases for digital services. Several Identity Management (IDM) systems are developed to cope with identity effectively, nonetheless, existing IDM systems have some limitations corresponding to identity and its management such as sovereignty, storage and access control, security, privacy and safeguarding, all of which require further improvement. Self-Sovereign Identity (SSI) is an emerging IDM system which incorporates several required features to ensure that identity is sovereign, secure, reliable and generic. It is an evolving IDM system, thus it is essential to analyse its various features to determine its effectiveness in coping with the dynamic requirements of identity and its current challenges. This paper proposes numerous governing principles of SSI to analyse any SSI ecosystem and its effectiveness. Later, based on the proposed governing principles of SSI, it performs a comparative analysis of the two most popular SSI ecosystems uPort and Sovrin to present their effectiveness and limitations.
This article presents the valuable experience and practical results of exploratory research by authors on the scientific problem of cyber-resilient (Cyber Resilience) critical information infrastructure in the previously unknown heterogeneous mass cyber attacks of attackers based on similarity invariants. It is essential that the results obtained significantly complement the well-known practices and recommendations of ISO 22301 (https://www.iso.org), MITER PR 15-1334 (www.mitre.org) and NIST SP 800-160 (www.nist.gov) in terms of developing quantitative metrics and cyber resistance measures. This allows you to open and formally present the ultimate law of the effectiveness of ensuring the cyber stability of modern systems of Industry 4.0. in the face of growing security threats.
Living in the age of digital transformation, companies and individuals are moving to public and private clouds to store and retrieve information, hence the need to store and retrieve data is exponentially increasing. Existing storage technologies such as DAS are facing a big challenge to deal with these huge amount of data. Hence, newer technologies should be adopted. Storage Area Network (SAN) is a distributed storage technology that aggregates data from several private nodes into a centralized secure place. Looking at SAN from a security perspective, clearly physical security over multiple geographical remote locations is not adequate to ensure a full security solution. A SAN security framework needs to be developed and designed. This work investigates how SAN protocols work (FC, ISCSI, FCOE). It also investigates about other storages technologies such as Network Attached Storage (NAS) and Direct Attached Storage (DAS) including different metrics such as: IOPS (input output per second), Throughput, Bandwidths, latency, cashing technologies. This research work is focusing on the security vulnerabilities in SAN listing different attacks in SAN protocols and compare it to other such as NAS and DAS. Another aspect of this work is to highlight performance factors in SAN in order to find a way to improve the performance focusing security solutions aimed to enhance the security level in SAN.
We recently see a real digital revolution where all companies prefer to use cloud computing because of its capability to offer a simplest way to deploy the needed services. However, this digital transformation has generated different security challenges as the privacy vulnerability against cyber-attacks. In this work we will present a new architecture of a hybrid Intrusion detection System, IDS for virtual private clouds, this architecture combines both network-based and host-based intrusion detection system to overcome the limitation of each other, in case the intruder bypassed the Network-based IDS and gained access to a host, in intend to enhance security in private cloud environments. We propose to use a non-traditional mechanism in the conception of the IDS (the detection engine). Machine learning, ML algorithms will can be used to build the IDS in both parts, to detect malicious traffic in the Network-based part as an additional layer for network security, and also detect anomalies in the Host-based part to provide more privacy and confidentiality in the virtual machine. It's not in our scope to train an Artificial Neural Network ”ANN”, but just to propose a new scheme for IDS based ANN, In our future work we will present all the details related to the architecture and parameters of the ANN, as well as the results of some real experiments.