Biblio
Geospatial fog computing system offers various benefits as a platform for geospatial computing services closer to the end users, including very low latency, good mobility, precise position awareness, and widespread distribution. In recent years, it has grown quickly. Fog nodes' security is susceptible to a number of assaults, including denial of service and resource abuse, because to their widespread distribution, complex network environments, and restricted resource availability. This paper proposes a Quantum Key Distribution (QKD)-based geospatial quantum fog computing environment that offers a symmetric secret key negotiation protocol that can preserve information-theoretic security. In QKD, after being negotiated between any two fog nodes, the secret keys can be given to several users in various locations to maintain forward secrecy and long-term protection. The new geospatial quantum fog computing environment proposed in this work is able to successfully withstand a variety of fog computing assaults and enhances information security.
A major challenge for utilities is energy theft, wherein malicious actors steal energy for financial gain. One such form of theft in the smart grid is the fraudulent amplification of energy generation measurements from DERs, such as photo-voltaics. It is important to detect this form of malicious activity, but in a way that ensures the privacy of customers. Not considering privacy aspects could result in a backlash from customers and a heavily curtailed deployment of services, for example. In this short paper, we present a novel privacy-preserving approach to the detection of manipulated DER generation measurements.