Biblio
Personalization, recommendations, and user modeling can be powerful tools to improve people's experiences with technology and to help them find information. However, we also know that people underestimate how much of their personal information is used by our technology and they generally do not understand how much algorithms can discover about them. Both privacy and ethical technology have issues of consent at their heart. While many personalization systems assume most users would consent to the way they employ personal data, research shows this is not necessarily the case. This talk will look at how to consider issues of privacy and consent when users cannot explicitly state their preferences, The Creepy Factor, and how to balance users' concerns with the benefits personalized technology can offer.
Personalization, recommendations, and user modeling can be pow- erful tools to improve people?s experiences with technology and to help them nd information. However, we also know that people underestimate how much of their personal information is used by our technology and they generally do not understand how much algorithms can discover about them. Both privacy and ethical tech- nology have issues of consent at their heart. This talk will look at how to consider issues of privacy and consent when users cannot explicitly state their preferences, The Creepy Factor, and how to balance users? concerns with the bene ts personalized technology can o er.
Much of the focus of recommender systems research has been on the accurate prediction of users' ratings for unseen items. Recent work has suggested that objectives such as diversity and novelty in recommendations are also important factors in the effectiveness of a recommender system. However, methods that attempt to increase diversity of recommendation lists for all users without considering each user's preference or tolerance for diversity may lead to monotony for some users and to poor recommendations for others. Our goal in this research is to evaluate the hypothesis that users' propensity towards diversity varies greatly and that the diversity of recommendation lists should be consistent with the level of user interest in diverse recommendations. We propose a pre-filtering clustering approach to group users with similar levels of tolerance for diversity. Our contributions are twofold. First, we propose a method for personalizing diversity by performing collaborative filtering independently on different segments of users based on the degree of diversity in their profiles. Secondly, we investigate the accuracy-diversity tradeoffs using the proposed method across different user segments. As part of this evaluation we propose new metrics, adapted from information retrieval, that help us measure the effectiveness of our approach in personalizing diversity. Our experimental evaluation is based on two different datasets: MovieLens movie ratings, and Yelp restaurant reviews.
Information shared on Twitter is ever increasing and users-recipients are overwhelmed by the number of tweets they receive, many of which of no interest. Filters that estimate the interest of each incoming post can alleviate this problem, for example by allowing users to sort incoming posts by predicted interest (e.g., "top stories" vs. "most recent" in Facebook). Global and personal filters have been used to detect interesting posts in social networks. Global filters are trained on large collections of posts and reactions to posts (e.g., retweets), aiming to predict how interesting a post is for a broad audience. In contrast, personal filters are trained on posts received by a particular user and the reactions of the particular user. Personal filters can provide recommendations tailored to a particular user's interests, which may not coincide with the interests of the majority of users that global filters are trained to predict. On the other hand, global filters are typically trained on much larger datasets compared to personal filters. Hence, global filters may work better in practice, especially with new users, for which personal filters may have very few training instances ("cold start" problem). Following Uysal and Croft, we devised a hybrid approach that combines the strengths of both global and personal filters. As in global filters, we train a single system on a large, multi-user collection of tweets. Each tweet, however, is represented as a feature vector with a number of user-specific features.
Personal agent software is now in daily use in personal devices and in some organizational settings. While many advocate an agent sociality design paradigm that incorporates human-like features and social dialogues, it is unclear whether this is a good match for professionals who seek productivity instead of leisurely use. We conducted a 17-day field study of a prototype of a personal AI agent that helps employees find work-related information. Using log data, surveys, and interviews, we found individual differences in the preference for humanized social interactions (social-agent orientation), which led to different user needs and requirements for agent design. We also explored the effect of agent proactive interactions and found that they carried the risk of interruption, especially for users who were generally averse to interruptions at work. Further, we found that user differences in social-agent orientation and aversion to agent proactive interactions can be inferred from behavioral signals. Our results inform research into social agent design, proactive agent interaction, and personalization of AI agents.
User modeling of individual users on the Social Web platforms such as Twitter plays a significant role in providing personalized recommendations and filtering interesting information from social streams. Recently, researchers proposed the use of concepts (e.g., DBpedia entities) for representing user interests instead of word-based approaches, since Knowledge Bases such as DBpedia provide cross-domain background knowledge about concepts, and thus can be used for extending user interest profiles. Even so, not all concepts can be covered by a Knowledge Base, especially in the case of microblogging platforms such as Twitter where new concepts/topics emerge everyday. In this short paper, instead of using concepts alone, we propose using synsets from WordNet and concepts from DBpedia for representing user interests. We evaluate our proposed user modeling strategies by comparing them with other bag-of-concepts approaches. The results show that using synsets and concepts together for representing user interests improves the quality of user modeling significantly in the context of link recommendations on Twitter.
Effective Personalized Mobile Search Using KNN, implements an architecture to improve user's personalization effectiveness over large set of data maintaining security of the data. User preferences are gathered through clickthrough data. Clickthrough data obtained is sent to the server in encrypted form. Clickthrough data obtained is classified into content concepts and location concepts. To improve classification and minimize processing time, KNN(K Nearest Neighborhood) algorithm is used. Preferences identified(location and content) are merged to provide effective preferences to the user. System make use of four entropies to balance weight between content concepts and location concepts. System implements client server architecture. Role of client is to collect user queries and to maintain them in files for future reference. User preference privacy is ensured through privacy parameters and also through encryption techniques. Server is responsible to carry out the tasks like training, reranking of the search results obtained and the concept extraction. Experiments are carried out on Android based mobile. Results obtained through experiments show that system significantly gives improved results over previous algorithm for the large set of data maintaining security.