Visible to the public Biblio

Filters: Keyword is Bluetooth  [Clear All Filters]
2022-02-25
Pandey, Manish, Kwon, Young-Woo.  2021.  Middleware for Edge Devices in Mobile Edge Computing. 2021 36th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC). :1—4.
In mobile edge computing, edge devices collect data, and an edge server performs computational or data processing tasks that need real-time processing. Depending upon the requested task's complexity, an edge server executes it locally or remotely in the cloud. When an edge server needs to offload its computational tasks, there could be a sudden failure in the cloud or network. In this scenario, we need to provide a flexible execution model to edge devices and servers for the continuous execution of the task. To that end, in this paper, we induced a middleware system that allows an edge server to execute a task on the edge devices instead of offloading it to a cloud server. Edge devices not only send data to an edge server for further processing but also execute edge services by utilizing nearby edge devices' computing resources. We extend the concept of service-oriented architecture and integrate a decentralized peer-to-peer network architecture to achieve reusability, location-specific security, and reliability. By following our methodology, software developers can enhance their application in a collaborative environment without worrying about low-level implementation.
2022-01-31
Lacava, Andrea, Giacomini, Emanuele, D'Alterio, Francesco, Cuomo, Francesca.  2021.  Intrusion Detection System for Bluetooth Mesh Networks: Data Gathering and Experimental Evaluations. 2021 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops). :661–666.
Bluetooth Low Energy mesh networks are emerging as new standard of short burst communications. While security of the messages is guaranteed thought standard encryption techniques, little has been done in terms of actively protecting the overall network in case of attacks aiming to undermine its integrity. Although many network analysis and risk mitigation techniques are currently available, they require considerable amounts of data coming from both legitimate and attack scenarios to sufficiently discriminate among them, which often turns into the requirement of a complete description of the traffic flowing through the network. Furthermore, there are no publicly available datasets to this extent for BLE mesh networks, due most to the novelty of the standard and to the absence of specific implementation tools. To create a reliable mechanism of network analysis suited for BLE in this paper we propose a machine learning Intrusion Detection System (IDS) based on pattern classification and recognition of the most classical denial of service attacks affecting this kind of networks, working on a single internal node, thus requiring a small amount of information to operate. Moreover, in order to overcome the gap created by the absence of data, we present our data collection system based on ESP32 that allowed the collection of the packets from the Network and the Model layers of the BLE Mesh stack, together with a set of experiments conducted to get the necessary data to train the IDS. In the last part, we describe some preliminary results obtained by the experimental setups, focusing on its strengths, as well as on the aspects where further analysis is required, hence proposing some improvements of the classification model as future work. Index Terms-Bluetooth, BLE Mesh, Intrusion Detection System, IoT, network security.
2021-09-21
Barr, Joseph R., Shaw, Peter, Abu-Khzam, Faisal N., Yu, Sheng, Yin, Heng, Thatcher, Tyler.  2020.  Combinatorial Code Classification Amp; Vulnerability Rating. 2020 Second International Conference on Transdisciplinary AI (TransAI). :80–83.
Empirical analysis of source code of Android Fluoride Bluetooth stack demonstrates a novel approach of classification of source code and rating for vulnerability. A workflow that combines deep learning and combinatorial techniques with a straightforward random forest regression is presented. Two kinds of embedding are used: code2vec and LSTM, resulting in a distance matrix that is interpreted as a (combinatorial) graph whose vertices represent code components, functions and methods. Cluster Editing is then applied to partition the vertex set of the graph into subsets representing nearly complete subgraphs. Finally, the vectors representing the components are used as features to model the components for vulnerability risk.
2021-06-24
Satam, Shalaka, Satam, Pratik, Hariri, Salim.  2020.  Multi-level Bluetooth Intrusion Detection System. 2020 IEEE/ACS 17th International Conference on Computer Systems and Applications (AICCSA). :1—8.
Large scale deployment of IoT devices has made Bluetooth Protocol (IEEE 802.15.1) the wireless protocol of choice for close-range communications. Devices such as keyboards, smartwatches, headphones, computer mouse, and various wearable connecting devices use Bluetooth network for communication. Moreover, Bluetooth networks are widely used in medical devices like heart monitors, blood glucose monitors, asthma inhalers, and pulse oximeters. Also, Bluetooth has replaced cables for wire-free equipment in a surgical environment. In hospitals, devices communicate with one another, sharing sensitive and critical information over Bluetooth scatter-networks. Thus, it is imperative to secure the Bluetooth networks against attacks like Man in the Middle attack (MITM), eavesdropping attacks, and Denial of Service (DoS) attacks. This paper presents a Multi-Level Bluetooth Intrusion Detection System (ML-BIDS) to detect malicious attacks against Bluetooth devices. In the ML-IDS framework, we perform continuous device identification and authorization in Bluetooth networks following the zero-trust principle [ref]. The ML-BIDS framework includes an anomaly-based intrusion detection system (ABIDS) to detect attacks on the Bluetooth protocol. The ABIDS tracks the normal behavior of the Bluetooth protocol by comparing it with the Bluetooth protocol state machine. Bluetooth frame flows consisting of Bluetooth frames received over 10 seconds are split into n-grams to track the current state of the protocol in the state machine. We evaluated the performance of several machine learning algorithms like C4.5, Adaboost, SVM, Naive Bayes, Jrip, and Bagging to classify normal Bluetooth protocol flows from abnormal Bluetooth protocol flows. The ABIDS detects attacks on Bluetooth protocols with a precision of up to 99.6% and recall up to 99.6%. The ML-BIDS framework also performs whitelisting of the devices on the Bluetooth network to prevent unauthorized devices from connecting to the network. ML-BIDS uses a combination of the Bluetooth Address, mac address, and IP address to uniquely identify a Bluetooth device connecting to the network, and hence ensuring only authorized devices can connect to the Bluetooth network.
2021-05-20
Kamalraj, R., Madhan, E.S., Ghamya, K., Bhargavi, V..  2020.  Enhance Safety and Security System for Children in School Campus by using Wearable Sensors. 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC). :986—990.
Child security in the school campus is most important in building a good society. In and around the world the children are abused and killed also in sometimes by the people those who are not in good attitude in the school campus. To track and resolve such issues an enhanced security feature system is required. Hence in this paper an enhanced version of security system for children is proposed by using `Wearable Sensors'. In this proposed method two wearable sensors nodes such as `Staff Node' and `Student Node' are paired by using `Bluetooth' communication technology and Smart Watch technology is also used to communicate the Security Center or Processing Node for tracking them about their location and whether the two nodes are moved away from the classroom. If the child node is not moving for a long period then it may be notified by the center and they will inform the security officers near to the place. This proposed method may satisfy the need of school management about the staff movements with students and the behavior of students to avoid unexpected issues.
2021-03-01
Tran, Q. T., Tran, D. D., Doan, D., Nguyen, M. S..  2020.  An Approach of BLE Mesh Network For Smart Home Application. 2020 International Conference on Advanced Computing and Applications (ACOMP). :170–174.
Internet of Things (IoT) now has extremely wide applications in many areas of life such as urban management, environmental management, smart shopping, and smart home. Because of the wide range of application fields, the IoT infrastructures are built differently. To make an IoT system indoor with high efficiency and more convenience, a case study for smart home security using Bluetooth Mesh approach is introduced. By using Bluetooth Mesh technology in home security, the user can open the door everywhere inside their house. The system work in a flexible way since it can extend the working range of network. In addition, the system can monitor the state of both the lock and any node in network by using a gateway to transfer data to cloud and enable a website-based interface.
2020-12-28
Zhang, Y., Weng, J., Ling, Z., Pearson, B., Fu, X..  2020.  BLESS: A BLE Application Security Scanning Framework. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :636—645.
Bluetooth Low Energy (BLE) is a widely adopted wireless communication technology in the Internet of Things (IoT). BLE offers secure communication through a set of pairing strategies. However, these pairing strategies are obsolete in the context of IoT. The security of BLE based devices relies on physical security, but a BLE enabled IoT device may be deployed in a public environment without physical security. Attackers who can physically access a BLE-based device will be able to pair with it and may control it thereafter. Therefore, manufacturers may implement extra authentication mechanisms at the application layer to address this issue. In this paper, we design and implement a BLE Security Scan (BLESS) framework to identify those BLE apps that do not implement encryption or authentication at the application layer. Taint analysis is used to track if BLE apps use nonces and cryptographic keys, which are critical to cryptographic protocols. We scan 1073 BLE apps and find that 93% of them are not secure. To mitigate this problem, we propose and implement an application-level defense with a low-cost \$0.55 crypto co-processor using public key cryptography.
Sanjay, K. N., Shaila, K., Venugopal, K. R..  2020.  LA-ANA based Architecture for Bluetooth Environment. 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). :222—226.
Wireless Personal Area Network is widely used in day to day life. It might be a static or dynamic environment. As the density of the nodes increases it becomes difficult to handle the situation. The need of multiple sensor node technology in a desired environment without congestion is required. The use of autonomic network provides one such solution. The autonomicity combines the local automate and address agnostic features that controls the congestion resulting in improved throughput, fault tolerance and also with unicast and multicast packets delivery. The algorithm LA based ANA in a Bluetooth based dynamic environment provide 20% increase in throughput compared with LACAS based Wireless Sensor Network. The LA based ANA leads with 10% lesser fault tolerance levels and extended unicast and multi-cast packet delivery.
Helluy-Lafont, É, Boé, A., Grimaud, G., Hauspie, M..  2020.  Bluetooth devices fingerprinting using low cost SDR. 2020 Fifth International Conference on Fog and Mobile Edge Computing (FMEC). :289—294.
Physical fingerprinting is a trending domain in wireless security. Those methods aim at identifying transmitters based on the subtle variations existing in their handling of a communication protocol. They can provide an additional authentication layer, hard to emulate, to improve the security of systems. Software Defined Radios (SDR) are a tool of choice for the fingerprinting, as they virtually enable the analysis of any wireless communication scheme. However, they require expensive computations, and are still complex to handle by newcomers. In this paper, we use low cost SDR to propose a physical-layer fingerprinting approach, that allows recognition of the model of a device performing a Bluetooth scan, with more than 99.8% accuracy in a set of ten devices.
Cominelli, M., Gringoli, F., Patras, P., Lind, M., Noubir, G..  2020.  Even Black Cats Cannot Stay Hidden in the Dark: Full-band De-anonymization of Bluetooth Classic Devices. 2020 IEEE Symposium on Security and Privacy (SP). :534—548.

Bluetooth Classic (BT) remains the de facto connectivity technology in car stereo systems, wireless headsets, laptops, and a plethora of wearables, especially for applications that require high data rates, such as audio streaming, voice calling, tethering, etc. Unlike in Bluetooth Low Energy (BLE), where address randomization is a feature available to manufactures, BT addresses are not randomized because they are largely believed to be immune to tracking attacks. We analyze the design of BT and devise a robust de-anonymization technique that hinges on the apparently benign information leaking from frame encoding, to infer a piconet's clock, hopping sequence, and ultimately the Upper Address Part (UAP) of the master device's physical address, which are never exchanged in clear. Used together with the Lower Address Part (LAP), which is present in all frames transmitted, this enables tracking of the piconet master, thereby debunking the privacy guarantees of BT. We validate this attack by developing the first Software-defined Radio (SDR) based sniffer that allows full BT spectrum analysis (79 MHz) and implements the proposed de-anonymization technique. We study the feasibility of privacy attacks with multiple testbeds, considering different numbers of devices, traffic regimes, and communication ranges. We demonstrate that it is possible to track BT devices up to 85 meters from the sniffer, and achieve more than 80% device identification accuracy within less than 1 second of sniffing and 100% detection within less than 4 seconds. Lastly, we study the identified privacy attack in the wild, capturing BT traffic at a road junction over 5 days, demonstrating that our system can re-identify hundreds of users and infer their commuting patterns.

Zhang, C., Shahriar, H., Riad, A. B. M. K..  2020.  Security and Privacy Analysis of Wearable Health Device. 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC). :1767—1772.

Mobile wearable health devices have expanded prevalent usage and become very popular because of the valuable health monitor system. These devices provide general health tips and monitoring human health parameters as well as generally assisting the user to take better health of themselves. However, these devices are associated with security and privacy risk among the consumers because these devices deal with sensitive data information such as users sleeping arrangements, dieting formula such as eating constraint, pulse rate and so on. In this paper, we analyze the significant security and privacy features of three very popular health tracker devices: Fitbit, Jawbone and Google Glass. We very carefully analyze the devices' strength and how the devices communicate and its Bluetooth pairing process with mobile devices. We explore the possible malicious attack through Bluetooth networking by hacker. The outcomes of this analysis show how these devices allow third parties to gain sensitive information from the device exact location that causes the potential privacy breach for users. We analyze the reasons of user data security and privacy are gained by unauthorized people on wearable devices and the possible challenge to secure user data as well as the comparison of three wearable devices (Fitbit, Jawbone and Google Glass) security vulnerability and attack type.

Zondo, S., Ogudo, K., Umenne, P..  2020.  Design of a Smart Home System Using Bluetooth Protocol. 2020 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD). :1—5.
Home automation is an intelligent, functional as a unit system that facilitates home processes without unnecessarily complicating the user's life. Devices can be connected, which in turn connect and talk through a centralized control unit, which are accessible via mobile phones. These devices include lights, appliances, security systems, alarms and many other sensors and devices. This paper presents the design and implementation of a Bluetooth based smart home automation system which uses a Peripheral interface controller (PIC) microcontroller (16F1937) as the main processer and the appliances are connected to the peripheral ports of the microcontroller via relays. The circuit in the project was designed in Diptrace software. The PCB layout design was completed. The fully functional smart home prototype was built and demonstrated to functional.
Antonioli, D., Tippenhauer, N. O., Rasmussen, K..  2020.  BIAS: Bluetooth Impersonation AttackS. 2020 IEEE Symposium on Security and Privacy (SP). :549—562.
Bluetooth (BR/EDR) is a pervasive technology for wireless communication used by billions of devices. The Bluetooth standard includes a legacy authentication procedure and a secure authentication procedure, allowing devices to authenticate to each other using a long term key. Those procedures are used during pairing and secure connection establishment to prevent impersonation attacks. In this paper, we show that the Bluetooth specification contains vulnerabilities enabling to perform impersonation attacks during secure connection establishment. Such vulnerabilities include the lack of mandatory mutual authentication, overly permissive role switching, and an authentication procedure downgrade. We describe each vulnerability in detail, and we exploit them to design, implement, and evaluate master and slave impersonation attacks on both the legacy authentication procedure and the secure authentication procedure. We refer to our attacks as Bluetooth Impersonation AttackS (BIAS).Our attacks are standard compliant, and are therefore effective against any standard compliant Bluetooth device regardless the Bluetooth version, the security mode (e.g., Secure Connections), the device manufacturer, and the implementation details. Our attacks are stealthy because the Bluetooth standard does not require to notify end users about the outcome of an authentication procedure, or the lack of mutual authentication. To confirm that the BIAS attacks are practical, we successfully conduct them against 31 Bluetooth devices (28 unique Bluetooth chips) from major hardware and software vendors, implementing all the major Bluetooth versions, including Apple, Qualcomm, Intel, Cypress, Broadcom, Samsung, and CSR.
Khatod, V., Manolova, A..  2020.  Effects of Man in the Middle (MITM) Attack on Bit Error Rate of Bluetooth System. 2020 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering (ECTI DAMT NCON). :153—157.
The ad-hoc network formed by Bluetooth works on radio frequency links. The security aspect of Bluetooth has to be handled more carefully. The radio frequency waves have a characteristic that the waves can pierce the obstructions in the communication path, get rid of the requirement of line of sight between the communicating devices. We propose a software model of man-in-the-middle attack along with unauthorized and authorized transmitter and receiver. Advanced White Gaussian Noise channel is simulated in the designed architecture. The transmitter uses Gaussian Frequency Shift Keying (GFSK) modulation like in Bluetooth. The receiver uses GFSK demodulation. In order to validate the performance of the designed system, bit error rate (BER) measurements are taken with respect to different time intervals. We found that BER drops roughly 18% if hopping duration of 150 seconds is chosen. We propose that a Bluetooth system with hopping rate of 0.006 Hz is used instead of 10Hz.
Ditton, S., Tekeoglu, A., Bekiroglu, K., Srinivasan, S..  2020.  A Proof of Concept Denial of Service Attack Against Bluetooth IoT Devices. 2020 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). :1—6.
Bluetooth technologies have widespread applications in personal area networks, device-to-device communications and forming ad hoc networks. Studying Bluetooth devices security is a challenging task as they lack support for monitor mode available with other wireless networks (e.g. 802.11 WiFi). In addition, the frequency-hoping spread spectrum technique used in its operation necessitates special hardware and software to study its operation. This investigation examines methods for analyzing Bluetooth devices' security and presents a proof-of-concept DoS attack on the Link Manager Protocol (LMP) layer using the InternalBlue framework. Through this study, we demonstrate a method to study Bluetooth device security using existing tools without requiring specialized hardware. Consequently, the methods proposed in the paper can be used to study Bluetooth security in many applications.
2020-12-21
Ayers, H., Crews, P., Teo, H., McAvity, C., Levy, A., Levis, P..  2020.  Design Considerations for Low Power Internet Protocols. 2020 16th International Conference on Distributed Computing in Sensor Systems (DCOSS). :103–111.
Low-power wireless networks provide IPv6 connectivity through 6LoWPAN, a set of standards to aggressively compress IPv6 packets over small maximum transfer unit (MTU) links such as 802.15.4.The entire purpose of IP was to interconnect different networks, but we find that different 6LoWPAN implementations fail to reliably communicate with one another. These failures are due to stacks implementing different subsets of the standard out of concern for code size. We argue that this failure stems from 6LoWPAN's design, not implementation, and is due to applying traditional Internet protocol design principles to low- power networks.We propose three design principles for Internet protocols on low-power networks, designed to prevent similar failures in the future. These principles are based around the importance of providing flexible tradeoffs between code size and energy efficiency. We apply these principles to 6LoWPAN and show that the modified protocol provides a wide range of implementation strategies while allowing implementations with different strategies to reliably communicate.
2020-12-01
Xu, W., Peng, Y..  2018.  SharaBLE: A Software Framework for Shared Usage of BLE Devices over the Internet. 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). :381—385.

With the development of Internet of Things, numerous IoT devices have been brought into our daily lives. Bluetooth Low Energy (BLE), due to the low energy consumption and generic service stack, has become one of the most popular wireless communication technologies for IoT. However, because of the short communication range and exclusive connection pattern, a BLE-equipped device can only be used by a single user near the device. To fully explore the benefits of BLE and make BLE-equipped devices truly accessible over the Internet as IoT devices, in this paper, we propose a cloud-based software framework that can enable multiple users to interact with various BLE IoT devices over the Internet. This framework includes an agent program, a suite of services hosting in cloud, and a set of RESTful APIs exposed to Internet users. Given the availability of this framework, the access to BLE devices can be extended from local to the Internet scale without any software or hardware changes to BLE devices, and more importantly, shared usage of remote BLE devices over the Internet is also made available.

2020-09-04
Ushakova, Margarita, Ushakov, Yury, Polezhaev, Petr, Shukhman, Alexandr.  2019.  Wireless Self-Organizing Wi-Fi and Bluetooth based Network For Internet Of Things. 2019 International Conference on Engineering and Telecommunication (EnT). :1—5.
Modern Internet of Things networks are often proprietary, although based on open standards, or are built on the basis of conventional Wi-Fi network, which does not allow the use of energy-saving modes and limits the range of solutions used. The paper is devoted to the study and comparison of two solutions based on Wi-Fi and Bluetooth with the functions of a self-organizing network and switching between transmission channels. The power consumption in relation to specific actions and volumes of transmitted data is investigated; a conclusion is drawn on the conditions for the application of a particular technology.
Ishak, Muhammad Yusry Bin, Ahmad, Samsiah Binti, Zulkifli, Zalikha.  2019.  Iot Based Bluetooth Smart Radar Door System Via Mobile Apps. 2019 1st International Conference on Artificial Intelligence and Data Sciences (AiDAS). :142—145.
{In the last few decades, Internet of things (IOT) is one of the key elements in industrial revolution 4.0 that used mart phones as one of the best technological advances' intelligent device. It allows us to have power over devices without people intervention, either remote or voice control. Therefore, the “Smart Radar Door “system uses a microcontroller and mobile Bluetooth module as an automation of smart door lock system. It is describing the improvement of a security system integrated with an Android mobile phone that uses Bluetooth as a wireless connection protocol and processing software as a tool in order to detect any object near to the door. The mob ile device is required a password as authentication method by using microcontroller to control lock and unlock door remotely. The Bluetooth protocol was chosen as a method of communication between microcontroller and mobile devices which integrated with many Android devices in secured protocol}.
Karim, Hassan, Rawat, Danda.  2019.  A Trusted Bluetooth Performance Evaluation Model for Brain Computer Interfaces. 2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI). :47—52.
Bluetooth enables excellent mobility in Brain Computer Interface (BCI) research and other use cases including ambulatory care, telemedicine, fitness tracking and mindfulness training. Although significant research exists for an all-encompassing BCI performance rating, almost all the literature addresses performance in terms of brain state or brain function classification accuracy. For the few published experiments that address BCI hardware performance, they too, focused on improving classification accuracy. This paper explores some of the more recent studies and proposes a trusted performance rating for BCI applications based on the enhanced privacy, yet reduced bandwidth needs of mobile EEG-based BCI applications. This paper proposes a set of Bluetooth operating parameters required to meet the performance, usability and privacy requirements of reliable and secure mobile neuro-feedback applications. It presents a rating model, "Trusted Mobile BCI", based on those operating parameters, and validated the model with studies that leveraged mobile BCI technology.
Elkanishy, Abdelrahman, Badawy, Abdel-Hameed A., Furth, Paul M., Boucheron, Laura E., Michael, Christopher P..  2019.  Machine Learning Bluetooth Profile Operation Verification via Monitoring the Transmission Pattern. 2019 53rd Asilomar Conference on Signals, Systems, and Computers. :2144—2148.
Manufacturers often buy and/or license communication ICs from third-party suppliers. These communication ICs are then integrated into a complex computational system, resulting in a wide range of potential hardware-software security issues. This work proposes a compact supervisory circuit to classify the Bluetooth profile operation of a Bluetooth System-on-Chip (SoC) at low frequencies by monitoring the radio frequency (RF) output power of the Bluetooth SoC. The idea is to inexpensively manufacture an RF envelope detector to monitor the RF output power and a profile classification algorithm on a custom low-frequency integrated circuit in a low-cost legacy technology. When the supervisory circuit observes unexpected behavior, it can shut off power to the Bluetooth SoC. In this preliminary work, we proto-type the supervisory circuit using off-the-shelf components to collect a sufficient data set to train 11 different Machine Learning models. We extract smart descriptive time-domain features from the envelope of the RF output signal. Then, we train the machine learning models to classify three different Bluetooth operation profiles: sensor, hands-free, and headset. Our results demonstrate 100% classification accuracy with low computational complexity.
Pallavi, Sode, Narayanan, V Anantha.  2019.  An Overview of Practical Attacks on BLE Based IOT Devices and Their Security. 2019 5th International Conference on Advanced Computing Communication Systems (ICACCS). :694—698.
BLE is used to transmit and receive data between sensors and devices. Most of the IOT devices employ BLE for wireless communication because it suits their requirements such as less energy constraints. The major security vulnerabilities in BLE protocol can be used by attacker to perform MITM attacks and hence violating confidentiality and integrity of data. Although BLE 4.2 prevents most of the attacks by employing elliptic-curve diffie-Hellman to generate LTK and encrypt the data, still there are many devices in the market that are using BLE 4.0, 4.1 which are vulnerable to attacks. This paper shows the simple demonstration of possible attacks on BLE devices that use various existing tools to perform spoofing, MITM and firmware attacks. We also discussed the security, privacy and its importance in BLE devices.
Almiani, Muder, Razaque, Abdul, Yimu, Liu, khan, Meer Jaro, Minjie, Tang, Alweshah, Mohammed, Atiewi, Saleh.  2019.  Bluetooth Application-Layer Packet-Filtering For Blueborne Attack Defending. 2019 Fourth International Conference on Fog and Mobile Edge Computing (FMEC). :142—148.
In recent years, the application of Bluetooth has always been the highly debated topic among the researches. Through the Bluetooth protocol, Bluetooth can implement the data switching in short distance between various devices. Nevertheless, BlueBorne Attack makes the seemingly stable Bluetooth protocols full of vulnerabilities. Our research will concentrate on predicting the BlueBorne Attack with the following directions: the working mechanism, the working methods and effective range of BlueBorne. Based on the comprehensive review of recent peer-reviewed researches, this project provides a new model based on application layer to solve the security problem of BlueBorne. The paper asserts that compared with the previous research, the unique model has better consequence with highly stability.
Tian, Dave Jing, Hernandez, Grant, Choi, Joseph I., Frost, Vanessa, Johnson, Peter C., Butler, Kevin R. B..  2019.  LBM: A Security Framework for Peripherals within the Linux Kernel. 2019 IEEE Symposium on Security and Privacy (SP). :967—984.

Modern computer peripherals are diverse in their capabilities and functionality, ranging from keyboards and printers to smartphones and external GPUs. In recent years, peripherals increasingly connect over a small number of standardized communication protocols, including USB, Bluetooth, and NFC. The host operating system is responsible for managing these devices; however, malicious peripherals can request additional functionality from the OS resulting in system compromise, or can craft data packets to exploit vulnerabilities within OS software stacks. Defenses against malicious peripherals to date only partially cover the peripheral attack surface and are limited to specific protocols (e.g., USB). In this paper, we propose Linux (e)BPF Modules (LBM), a general security framework that provides a unified API for enforcing protection against malicious peripherals within the Linux kernel. LBM leverages the eBPF packet filtering mechanism for performance and extensibility and we provide a high-level language to facilitate the development of powerful filtering functionality. We demonstrate how LBM can provide host protection against malicious USB, Bluetooth, and NFC devices; we also instantiate and unify existing defenses under the LBM framework. Our evaluation shows that the overhead introduced by LBM is within 1 μs per packet in most cases, application and system overhead is negligible, and LBM outperforms other state-of-the-art solutions. To our knowledge, LBM is the first security framework designed to provide comprehensive protection against malicious peripherals within the Linux kernel.

Ghori, Muhammad Rizwan, Wan, Tat-Chee, Anbar, Mohammed, Sodhy, Gian Chand, Rizwan, Amna.  2019.  Review on Security in Bluetooth Low Energy Mesh Network in Correlation with Wireless Mesh Network Security. 2019 IEEE Student Conference on Research and Development (SCOReD). :219—224.

Wireless Mesh Networks (WMN) are becoming inevitable in this world of high technology as it provides low cost access to broadband services. Moreover, the technologists are doing research to make WMN more reliable and secure. Subsequently, among wireless ad-hoc networking technologies, Bluetooth Low Energy (BLE) is gaining high degree of importance among researchers due to its easy availability in the gadgets and low power consumption. BLE started its journey from version 4.0 and announced the latest version 5 with mesh support capability. BLE being a low power and mesh supported technology is nowadays among the hot research topics for the researchers. Many of the researchers are working on BLE mesh technology to make it more efficient and smart. Apart from other variables of efficiency, like all communication networks, mesh network security is also of a great concern. In view of the aforesaid, this paper provides a comprehensive review on several works associated to the security in WMN and BLE mesh networks and the research related to the BLE security protocols. Moreover, after the detailed research on related works, this paper has discussed the pros and cons of the present developed mesh security mechanisms. Also, at the end after extracting the curx from the present research on WMN and BLE mesh security, this research study has devised some solutions as how to mitigate the BLE mesh network security lapses.