Biblio
Bluetooth Classic (BT) remains the de facto connectivity technology in car stereo systems, wireless headsets, laptops, and a plethora of wearables, especially for applications that require high data rates, such as audio streaming, voice calling, tethering, etc. Unlike in Bluetooth Low Energy (BLE), where address randomization is a feature available to manufactures, BT addresses are not randomized because they are largely believed to be immune to tracking attacks. We analyze the design of BT and devise a robust de-anonymization technique that hinges on the apparently benign information leaking from frame encoding, to infer a piconet's clock, hopping sequence, and ultimately the Upper Address Part (UAP) of the master device's physical address, which are never exchanged in clear. Used together with the Lower Address Part (LAP), which is present in all frames transmitted, this enables tracking of the piconet master, thereby debunking the privacy guarantees of BT. We validate this attack by developing the first Software-defined Radio (SDR) based sniffer that allows full BT spectrum analysis (79 MHz) and implements the proposed de-anonymization technique. We study the feasibility of privacy attacks with multiple testbeds, considering different numbers of devices, traffic regimes, and communication ranges. We demonstrate that it is possible to track BT devices up to 85 meters from the sniffer, and achieve more than 80% device identification accuracy within less than 1 second of sniffing and 100% detection within less than 4 seconds. Lastly, we study the identified privacy attack in the wild, capturing BT traffic at a road junction over 5 days, demonstrating that our system can re-identify hundreds of users and infer their commuting patterns.
The Internet of things networks is vulnerable to many DOS attacks. Among them, Blackhole attack is one of the severe attacks as it hampers communication among network devices. In general, the solutions presented in the literature for Blackhole detection are not efficient. In addition, the existing approaches do not factor-in, the consumption in resources viz. energy, bandwidth and network lifetime. Further, these approaches are also insensitive to the mechanism used for selecting a parent in on Blackhole formation. Needless to say, a blackhole node if selected as parent would lead to orchestration of this attack trivially and hence it is an important factor in selection of a parent. In this paper, we propose SIEWE (Strainer based Intrusion Detection of Blackhole in 6LoWPAN for the Internet of Things) - an Intrusion detection mechanism to identify Blackhole attack on Routing protocol RPL in IoT. In contrast to the Watchdog based approaches where every node in network runs in promiscuous mode, SIEWE filters out suspicious nodes first and then verifies the behavior of those nodes only. The results that we obtain, show that SIEWE improves the Packet Delivery Ratio (PDR) of the system by blacklisting malicious Blackhole nodes.
A significant segment of the Internet of Things (IoT) is the resource constrained Low Power and Lossy Networks (LLNs). The communication protocol used in LLNs is 6LOWPAN (IPv6 over Low-power Wireless Personal Area Network) which makes use of RPL (IPv6 Routing Protocol over Low power and Lossy network) as its routing protocol. In recent times, several security breaches in IoT networks occurred by targeting routers to instigate various DDoS (Distributed Denial of Service) attacks. Hence, routing security has become an important problem in securing the IoT environment. Though RPL meets all the routing requirements of LLNs, it is important to perform a holistic security assessment of RPL as it is susceptible to many security attacks. An important attribute of RPL is its rank property. The rank property defines the placement of sensor nodes in the RPL DODAG (Destination Oriented Directed Acyclic Graphs) based on an Objective Function. Examples of Objective Functions include Expected Transmission Count, Packet Delivery Rate etc. Rank property assists in routing path optimization, reducing control overhead and maintaining a loop free topology through rank based data path validation. In this paper, we investigate the vulnerabilities of the rank property of RPL by constructing an Attack Graph. For the construction of the Attack Graph we analyzed all the possible threats associated with rank property. Through our investigation we found that violation of protocols related to rank property results in several RPL attacks causing topological sub-optimization, topological isolation, resource consumption and traffic disruption. Routing security essentially comprises mechanisms to ensure correct implementation of the routing protocol. In this paper, we also present some observations which can be used to devise mechanisms to prevent the exploitation of the vulnerabilities of the rank property.
Internet-of-Things (IoT) is a resource-constrained network with machines low on power, processing and memory capabilities. Resource constraints in IoT impact the adoption of protocols for design and validation of unique identity (ID) for every machine. Malicious machines spoof ID to pose as administrative machines and program their neighbour systems in the network with malware. The cycle of ID spoofing and infecting the IP-enabled devices with malware creates an entire network popularly termed as the Botnet. In this paper, we study 6LoWPAN and ZigBee for DDoS and ID spoofing vulnerabilities. We propose a design for generation and validation of ID on such systems called Pseudo Random Identity Generator (PRIG). We compare the performance of PRIG-adapted 6LoWPAN with 6LoWPAN in a simulated personal area network (PAN) model under DDoS stress and demonstrate a 93% reduction in ID validation time as well as an improvement of 67% in overall throughput.
The software defined networking framework facilitates flexible and reliable internet of things networks by moving the network intelligence to a centralized location while enabling low power wireless network in the edge. In this paper, we present SD-WSN6Lo, a novel software-defined wireless management solution for 6LoWPAN networks that aims to reduce the management complexity in WSN's. As an example of the technique, a simulation of controlling the power consumption of sensor nodes is presented. The results demonstrate improved energy consumption of approximately 15% on average per node compared to the baseline condition.
Internet of things has become a subject of interest across a different industry domain. It includes 6LoWPAN (Low-Power Wireless Personal Area Network) which is used for a variety of application including home automation, sensor networks, manufacturing and industry application etc. However, gathering such a huge amount of data from such a different domain causes a problem of traffic congestion, high reliability, high energy efficiency etc. In order to address such problems, content based routing (CBR) technique is proposed, where routing paths are decided according to the type of content. By routing the correlated data to hop nodes for processing, a higher data aggregation ratio can be obtained, which in turns reducing the traffic congestion and minimizes the energy consumption. CBR is implemented on top of existing RPL (Routing Protocol for Low Power and Lossy network) and implemented in contiki operating system using cooja simulator. The analysis are carried out on the basis average power consumption, packet delivery ratio etc.
As demonstrated recently, Wireless Physical Layer Security (WPLS) has the potential to offer substantial advantages for key management for small resource-constrained and, therefore, low-cost IoT-devices, e.g., the widely applied 8-bit MCU 8051. In this paper, we present a WPLS testbed implementation for independent performance and security evaluations. The testbed is based on off-the-shelf hardware and utilizes the IEEE 802.15.4 communication standard for key extraction and secret key rate estimation in real-time. The testbed can include generically multiple transceivers to simulate legitimate parties or eavesdropper. We believe with the testbed we provide a first step to make experimental-based WPLS research results comparable. As an example, we present evaluation results of several test cases we performed, while for further information we refer to https://pls.rub.de.
The Internet Protocol version 6 (IPv6) over Low Power Wireless Personal Area Networks (6LoWPAN), which is a promising technology to promote the development of the Internet of Things (IoT), has been proposed to connect millions of IP-based sensing devices over the open Internet. To support the mobility of these resource constrained sensing nodes, the Proxy Mobile IPv6 (PMIPv6) has been proposed as the standard. Although the standard has specified some issues of security and mobility in 6LoWPANs, the issues of supporting secure group handovers have not been addressed much by the current existing solutions. In this paper, to reduce the handover latency and signaling cost, an efficient and secure group mobility scheme is designed to support seamless handovers for a group of resource constrained 6LoWPAN devices. With the consideration of the devices holding limited energy capacities, only simple hash and symmetric encryption method is used. The security analysis and the performance evaluation results show that the proposed 6LoWPAN group handover scheme could not only enhance the security functionalities but also support fast authentication for handovers.
The Internet of Things leads to the inter-connectivity of a wide range of devices. This heterogeneity of hardware and software poses significant challenges to security. Constrained IoT devices often do not have enough resources to carry the overhead of an intrusion protection system or complex security protocols. A typical initial step in network security is a network scan in order to find vulnerable nodes. In the context of IoT, the initiator of the scan can be particularly interested in finding constrained devices, assuming that they are easier targets. In IoT networks hosting devices of various types, performing a scan with a high discovery rate can be a challenging task, since low-power networks such as IEEE 802.15.4 are easily overloaded. In this paper, we propose an approach to increase the efficiency of network scans by combining them with active network measurements. The measurements allow the scanner to differentiate IoT nodes by the used network technology. We show that the knowledge gained from this differentiation can be used to control the scan strategy in order to reduce probe losses.
Internet Protocol version 6 (IPv6) over Low power Wireless Personal Area Networks (6LoWPAN) is extensively used in wireless sensor networks (WSNs) due to its ability to transmit IPv6 packet with low bandwidth and limited resources. 6LoWPAN has several operations in each layer. Most existing security challenges are focused on the network layer, which is represented by its routing protocol for low-power and lossy network (RPL). RPL components include WSN nodes that have constrained resources. Therefore, the exposure of RPL to various attacks may lead to network damage. A sinkhole attack is a routing attack that could affect the network topology. This paper aims to investigate the existing detection mechanisms used in detecting sinkhole attack on RPL-based networks. This work categorizes and presents each mechanism according to certain aspects. Then, their advantages and drawbacks with regard to resource consumption and false positive rate are discussed and compared.
6L0WPAN is a communication protocol for Internet of Things. 6LoWPAN is IPv6 protocol modified for low power and lossy personal area networks. 6LoWPAN inherits threats from its predecessors IPv4 and IPv6. IP spoofing is a known attack prevalent in IPv4 and IPv6 networks but there are new vulnerabilities which creates new paths, leading to the attack. This study performs the experimental study to check the feasibility of performing IP spoofing attack on 6LoWPAN Network. Intruder misuses 6LoWPAN control messages which results into wrong IPv6-MAC binding in router. Attack is also simulated in cooja simulator. Simulated results are analyzed for finding cost to the attacker in terms of energy and memory consumption.
The 6L0WPAN adaptation layer is widely used in many Internet of Things (IoT) and vehicular networking applications. The current IoT framework [1], which introduced 6LoWPAN to the TCP/IP model, does not specif the implementation for managing its received-fragments buffer. This paper looks into the effect of current implementations of buffer management strategies at 6LoWPAN's response in case of fragmentation-based, buffer reservation Denial of Service (DoS) attacks. The Packet Drop Rate (PDR) is used to analyze how successful the attacker is for each management technique. Our investigation uses different defence strategies, which include our implementation of the Split Buffer mechanism [2] and a modified version of this mechanism that we devise in this paper as well. In particular, we introduce dynamic calculation for the average time between consecutive fragments and the use of a list of previously dropped packets tags. NS3 is used to simulate all the implementations. Our results show that using a ``slotted'' buffer would enhance 6LoWPAN's response against these attacks. The simulations also provide an in-depth look at using scoring systems to manage buffer cleanups.