Biblio
6LoWPAN networks involving wireless sensors consist of resource starving miniature sensor nodes. Since secured authentication of these resource-constrained sensors is one of the important considerations during communication, use of asymmetric key distribution scheme may not be the perfect choice to achieve secure authentication. Recent research shows that Lucky Thirteen attack has compromised Datagram Transport Layer Security (DTLS) with Cipher Block Chaining (CBC) mode for key establishment. Even though EAKES6Lo and S3K techniques for key establishment follow the symmetric key establishment method, they strongly rely on a remote server and trust anchor for secure key distribution. Our proposed Lightweight Authentication Protocol (LAUP) used a symmetric key method with no preshared keys and comprised of four flights to establish authentication and session key distribution between sensors and Edge Router in a 6LoWPAN environment. Each flight uses freshly derived keys from existing information such as PAN ID (Personal Area Network IDentification) and device identities. We formally verified our scheme using the Scyther security protocol verification tool for authentication properties such as Aliveness, Secrecy, Non-Injective Agreement and Non-Injective Synchronization. We simulated and evaluated the proposed LAUP protocol using COOJA simulator with ContikiOS and achieved less computational time and low power consumption compared to existing authentication protocols such as the EAKES6Lo and SAKES.
The Department of Homeland Security Cyber Security Division (CSD) chose Moving Target Defense as one of the fourteen primary Technical Topic Areas pertinent to securing federal networks and the larger Internet. Moving Target Defense over IPv6 (MT6D) employs an obscuration technique offering keyed access to hosts at a network level without altering existing network infrastructure. This is accomplished through cryptographic dynamic addressing, whereby a new network address is bound to an interface every few seconds in a coordinated manner. The goal of this research is to produce a Register Transfer Level (RTL) network security processor implementation to enable the production of an Application Specific Integrated Circuit (ASIC) variant of MT6D processor for wide deployment. RTL development is challenging in that it must provide system level functions that are normally provided by the Operating System's kernel and supported libraries. This paper presents the architectural design of a hardware engine for MT6D (HE-MT6D) and is complete in simulation. Unique contributions are an inline stream-based network packet processor with a Complex Instruction Set Computer (CISC) architecture, Network Time Protocol listener, and theoretical increased performance over previous software implementations.
In the near future, billions of new smart devices will connect the big network of the Internet of Things, playing an important key role in our daily life. Allowing IPv6 on the low-power resource constrained devices will lead research to focus on novel approaches that aim to improve the efficiency, security and performance of the 6LoWPAN adaptation layer. This work in progress paper proposes a hardware-based Network Packet Filtering (NPF) and an IPv6 Link-local address calculator which is able to filter the received IPv6 packets, offering nearly 18% overhead reduction. The goal is to obtain a System-on-Chip implementation that can be deployed in future IEEE 802.15.4 radio modules.
The strong development of the Internet of Things (IoT) is dramatically changing traditional perceptions of the current Internet towards an integrated vision of smart objects interacting with each other. While in recent years many technological challenges have already been solved through the extension and adaptation of wireless technologies, security and privacy still remain as the main barriers for the IoT deployment on a broad scale. In this emerging paradigm, typical scenarios manage particularly sensitive data, and any leakage of information could severely damage the privacy of users. This paper provides a concise description of some of the major challenges related to these areas that still need to be overcome in the coming years for a full acceptance of all IoT stakeholders involved. In addition, we propose a distributed capability-based access control mechanism which is built on public key cryptography in order to cope with some of these challenges. Specifically, our solution is based on the design of a lightweight token used for access to CoAP Resources, and an optimized implementation of the Elliptic Curve Digital Signature Algorithm (ECDSA) inside the smart object. The results obtained from our experiments demonstrate the feasibility of the proposal and show promising in order to cover more complex scenarios in the future, as well as its application in specific IoT use cases.
The innovations in communication and computing technologies are changing the way we carry-out the tasks in our daily lives. These revolutionary and disrupting technologies are available to the users in various hardware form-factors like Smart Phones, Embedded Appliances, Configurable or Customizable add-on devices, etc. One such technology is Bluetooth [1], which enables the users to communicate and exchange various kinds of information like messages, audio, streaming music and file transfer in a Personal Area Network (PAN). Though it enables the user to carry-out these kinds of tasks without much effort and infrastructure requirements, they inherently bring with them the security and privacy concerns, which need to be addressed at different levels. In this paper, we present an application-layer framework, which provides strong mutual authentication of applications, data confidentiality and data integrity independent of underlying operating system. It can make use of the services of different Cryptographic Service Providers (CSP) on different operating systems and in different programming languages. This framework has been successfully implemented and tested on Android Operating System on one end (using Java language) and MS-Windows 7 Operating System on the other end (using ANSI C language), to prove the framework's reliability/compatibility across OS, Programming Language and CSP. This framework also satisfies the three essential requirements of Security, i.e. Confidentiality, Integrity and Availability, as per the NIST Guide to Bluetooth Security specification and enables the developers to suitably adapt it for different kinds of applications based on Bluetooth Technology.