Visible to the public Biblio

Filters: Keyword is TEA  [Clear All Filters]
2021-08-18
Chatterjee, Runa, Chakraborty, Rajdeep.  2020.  A Modified Lightweight PRESENT Cipher For IoT Security. 2020 International Conference on Computer Science, Engineering and Applications (ICCSEA). :1—6.
Of late, the massive use of pervasive devices in the electronics field has raised the concerns about security. In embedded applications or IoT domain implementing a full-fledged cryptographic environment using conventional encryption algorithms would not be practical because of the constraints like power dissipation, area and speed. To overcome such barriers the focus is on lightweight cryptography. In this paper a new lightweight PRESENT cipher has been proposed which has modified the original PRESENT cipher by reducing encryption round, modifying the Key Register updating technique and adding a new layer in between S-box layer and P-layer of the existing encryption-decryption process. The key register is updated by encrypting its value by adding delta value function of TEA (Tiny encryption algorithm), which is another lightweight cipher. The addition of extra layer helps us to reduce the PRESENT round from 31 to 25 which is the minimum round required for security. The efficiency of the proposed algorithm is increased by encrypting the key register. The proposed algorithm proves its superiority by analyzing different software parameter analysis like N-gram, Non-Homogeneity, Frequency Distribution graph and Histogram.
2020-01-07
P.G., Swathi, Rajesh, Sreeja.  2018.  Double Encryption Using TEA and DNA. 2018 International Conference on Circuits and Systems in Digital Enterprise Technology (ICCSDET). :1-5.
Information security has become a major challenge in data transmission. Data transmitted through the network is vulnerable to many passive and active attacks. Cryptographic algorithms provide security against the data intruders and provide secure network communication. In this method, two algorithms TEA and DNA are combined to form a new algorithm called DETD (Double Encryption using TEA and DNA). The algorithm mainly deals with encryption and decryption time of a given input text. Here, both the encryption and decryption time are compared with the other two algorithms and the results are recorded. This algorithm also aims to provide data security by increasing the levels of encryption.
2015-05-04
Putra, M.S.A., Budiman, G., Novamizanti, L..  2014.  Implementation of steganography using LSB with encrypted and compressed text using TEA-LZW on Android. Computer, Control, Informatics and Its Applications (IC3INA), 2014 International Conference on. :93-98.

The development of data communications enabling the exchange of information via mobile devices more easily. Security in the exchange of information on mobile devices is very important. One of the weaknesses in steganography is the capacity of data that can be inserted. With compression, the size of the data will be reduced. In this paper, designed a system application on the Android platform with the implementation of LSB steganography and cryptography using TEA to the security of a text message. The size of this text message may be reduced by performing lossless compression technique using LZW method. The advantages of this method is can provide double security and more messages to be inserted, so it is expected be a good way to exchange information data. The system is able to perform the compression process with an average ratio of 67.42 %. Modified TEA algorithm resulting average value of avalanche effect 53.8%. Average result PSNR of stego image 70.44 dB. As well as average MOS values is 4.8.