Al Khayer, Aala, Almomani, Iman, Elkawlak, Khaled.
2020.
ASAF: Android Static Analysis Framework. 2020 First International Conference of Smart Systems and Emerging Technologies (SMARTTECH). :197–202.
Android Operating System becomes a major target for malicious attacks. Static analysis approach is widely used to detect malicious applications. Most of existing studies on static analysis frameworks are limited to certain features. This paper presents an Android Static Analysis Framework (ASAF) which models the overall static analysis phases and approaches for Android applications. ASAF can be implemented for different purposes including Android malicious apps detection. The proposed framework utilizes a parsing tool, Android Static Parse (ASParse) which is also introduced in this paper. Through the extendibility of the ASParse tool, future research studies can easily extend the parsed features and the parsed files to perform parsing based on their specific requirements and goals. Moreover, a case study is conducted to illustrate the implementation of the proposed ASAF.
Stiévenart, Quentin, Roover, Coen De.
2020.
Compositional Information Flow Analysis for WebAssembly Programs. 2020 IEEE 20th International Working Conference on Source Code Analysis and Manipulation (SCAM). :13–24.
WebAssembly is a new W3C standard, providing a portable target for compilation for various languages. All major browsers can run WebAssembly programs, and its use extends beyond the web: there is interest in compiling cross-platform desktop applications, server applications, IoT and embedded applications to WebAssembly because of the performance and security guarantees it aims to provide. Indeed, WebAssembly has been carefully designed with security in mind. In particular, WebAssembly applications are sandboxed from their host environment. However, recent works have brought to light several limitations that expose WebAssembly to traditional attack vectors. Visitors of websites using WebAssembly have been exposed to malicious code as a result. In this paper, we propose an automated static program analysis to address these security concerns. Our analysis is focused on information flow and is compositional. For every WebAssembly function, it first computes a summary that describes in a sound manner where the information from its parameters and the global program state can flow to. These summaries can then be applied during the subsequent analysis of function calls. Through a classical fixed-point formulation, one obtains an approximation of the information flow in the WebAssembly program. This results in the first compositional static analysis for WebAssembly. On a set of 34 benchmark programs spanning 196kLOC of WebAssembly, we compute at least 64% of the function summaries precisely in less than a minute in total.
Aslanyan, Hayk, Arutunian, Mariam, Keropyan, Grigor, Kurmangaleev, Shamil, Vardanyan, Vahagn.
2020.
BinSide : Static Analysis Framework for Defects Detection in Binary Code. 2020 Ivannikov Memorial Workshop (IVMEM). :3–8.
Software developers make mistakes that can lead to failures of a software product. One approach to detect defects is static analysis: examine code without execution. Currently, various source code static analysis tools are widely used to detect defects. However, source code analysis is not enough. The reason for this is the use of third-party binary libraries, the unprovability of the correctness of all compiler optimizations. This paper introduces BinSide : binary static analysis framework for defects detection. It does interprocedural, context-sensitive and flow-sensitive analysis. The framework uses platform independent intermediate representation and provide opportunity to analyze various architectures binaries. The framework includes value analysis, reaching definition, taint analysis, freed memory analysis, constant folding, and constant propagation engines. It provides API (application programming interface) and can be used to develop new analyzers. Additionally, we used the API to develop checkers for classic buffer overflow, format string, command injection, double free and use after free defects detection.
Andes, Neil, Wei, Mingkui.
2020.
District Ransomware: Static and Dynamic Analysis. 2020 8th International Symposium on Digital Forensics and Security (ISDFS). :1–6.
Ransomware is one of the fastest growing threats to internet security. New Ransomware attacks happen around the globe, on a weekly basis. These attacks happen to individual users and groups, from almost any type of business. Many of these attacks involve Ransomware as a service, where one attacker creates a template Malware, which can be purchased and modified by other attackers to perform specific actions. The District Ransomware was a less well-known strain. This work focuses on statically and dynamically analyzing the District Ransomware and presenting the results.
Liyanarachchi, Lakna, Hosseinzadeh, Nasser, Mahmud, Apel, Gargoom, Ameen, Farahani, Ehsan M..
2020.
Contingency Ranking Selection using Static Security Performance Indices in Future Grids. 2020 Australasian Universities Power Engineering Conference (AUPEC). :1–6.
Power system security assessment and enhancement in grids with high penetration of renewables is critical for pragmatic power system planning. Static Security Assessment (SSA) is a fast response tool to assess system stability margins following considerable contingencies assuming post fault system reaches a steady state. This paper presents a contingency ranking methodology using static security indices to rank credible contingencies considering severity. A Modified IEEE 9 bus system integrating renewables was used to test the approach. The static security indices used independently provides accurate results in identifying severe contingencies but further assessment is needed to provide an accurate picture of static security assessment in an increased time frame of the steady state. The indices driven for static security assessment could accurately capture and rank contingencies with renewable sources but due to intermittency of the renewable source various contingency ranking lists are generated. This implies that using indices in future grids without consideration on intermittent nature of renewables will make it difficult for the grid operator to identify severe contingencies and assist the power system operator to make operational decisions. This makes it necessary to integrate the behaviour of renewables in security indices for practical application in real time security assessment.
Medeiros, Ibéria, Neves, Nuno.
2020.
Impact of Coding Styles on Behaviours of Static Analysis Tools for Web Applications. 2020 50th Annual IEEE-IFIP International Conference on Dependable Systems and Networks-Supplemental Volume (DSN-S). :55–56.
Web applications have become an essential resource to access the services of diverse subjects (e.g., financial, healthcare) available on the Internet. Despite the efforts that have been made on its security, namely on the investigation of better techniques to detect vulnerabilities on its source code, the number of vulnerabilities exploited has not decreased. Static analysis tools (SATs) are often used to test the security of applications since their outcomes can help developers in the correction of the bugs they found. The conducted investigation made over SATs stated they often generate errors (false positives (FP) and false negatives (FN)), whose cause is recurrently associated with very diverse coding styles, i.e., similar functionality is implemented in distinct manners, and programming practices that create ambiguity, such as the reuse and share of variables. Based on a common practice of using multiple forms in a same webpage and its processing in a single file, we defined a use case for user login and register with six coding styles scenarios for processing their data, and evaluated the behaviour of three SATs (phpSAFE, RIPS and WAP) with them to verify and understand why SATs produce FP and FN.
Ajiri, Victor, Butakov, Sergey, Zavarsky, Pavol.
2020.
Detection Efficiency of Static Analyzers against Obfuscated Android Malware. 2020 IEEE 6th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :231–234.
Mobile antivirus technologies incorporate static analysis which involves the analysis of programs without its execution. This process relies on pattern matching against a signature repository to identify malware, which can be easily tricked by transformation techniques such as obfuscation. Obfuscation as an evasion technique renders character strings disguised and incomprehensive, to prevent tampering and reengineering, which poses to be a valuable technique malware developers adopt to evade detection. This paper attempts to study the detection efficiency of static analyzers against obfuscated Android malware. This study is the first step in a larger project attempting to improve the efficiency of malware detectors.
Chao, Wang, Qun, Li, XiaoHu, Wang, TianYu, Ren, JiaHan, Dong, GuangXin, Guo, EnJie, Shi.
2020.
An Android Application Vulnerability Mining Method Based On Static and Dynamic Analysis. 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC). :599–603.
Due to the advantages and limitations of the two kinds of vulnerability mining methods of static and dynamic analysis of android applications, the paper proposes a method of Android application vulnerability mining based on dynamic and static combination. Firstly, the static analysis method is used to obtain the basic vulnerability analysis results of the application, and then the input test case of dynamic analysis is constructed on this basis. The fuzzy input test is carried out in the real machine environment, and the application security vulnerability is verified with the taint analysis technology, and finally the application vulnerability report is obtained. Experimental results show that compared with static analysis results, the method can significantly improve the accuracy of vulnerability mining.
Li, Ziqing, Feng, Guiling.
2020.
Inter-Language Static Analysis for Android Application Security. 2020 IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE). :647–650.
The Android application market will conduct various security analysis on each application to predict its potential harm before put it online. Since almost all the static analysis tools can only detect malicious behaviors in the Java layer, more and more malwares try to avoid static analysis by taking the malicious codes to the Native layer. To provide a solution for the above situation, there's a new research aspect proposed in this paper and defined as Inter-language Static Analysis. As all the involved technologies are introduced, the current research results of them will be captured in this paper, such as static analysis in Java layer, binary analysis in Native layer, Java-Native penetration technology, etc.
Zhang, Yanmiao, Ji, Xiaoyu, Cheng, Yushi, Xu, Wenyuan.
2019.
Vulnerability Detection for Smart Grid Devices via Static Analysis. 2019 Chinese Control Conference (CCC). :8915–8919.
As a modern power transmission network, smart grid connects abundant terminal devices and plays an important role in our daily life. However, along with its growth are the security threats. Different from the separated environment previously, an adversary nowadays can destroy the power system by attacking its terminal devices. As a result, it's critical to ensure the security and safety of terminal devices. To achieve it, detecting the pre-existing vulnerabilities in the terminal program and enhancing its security, are of great importance and necessity. In this paper, we introduce Cker, a novel vulnerability detection tool for smart grid devices, which generates an program model based on device sources and sets rules to perform model checking. We utilize the static analysis to extract necessary information and build corresponding program models. By further checking the model with pre-defined vulnerability patterns, we achieve security detection and error reporting. The evaluation results demonstrate that our method can effectively detect vulnerabilities in smart devices with an acceptable accuracy and false positive rate. In addition, as Cker is realized by pure python, it can be easily scaled to other platforms.
Fan, Chengwei, Chen, Zhen, Wang, Xiaoru, Teng, Yufei, Chen, Gang, Zhang, Hua, Han, Xiaoyan.
2019.
Static Security Assessment of Power System Considering Governor Nonlinearity. 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia). :128–133.
Static security assessment is of great significance to ensure the stable transmission of electric power and steady operation of load. The scale of power system trends to expand due to the development of interconnected grid, and the security analysis of the entire network has become time-consuming. On the basis of synthesizing the efficiency and accuracy, a new method is developed. This method adopts a novel dynamic power flow (DPF) model considering the influence of governor deadband and amplitude-limit on the steady state quantitatively. In order to reduce the computation cost, a contingency screening algorithm based on binary search method is proposed. Static security assessment based on the proposed DPF models is applied to calculate the security margin constrained by severe contingencies. The ones with lower margin are chosen for further time-domain (TD) simulation analysis. The case study of a practical grid verifies the accuracy of the proposed model compared with the conventional one considering no governor nonlinearity. Moreover, the test of a practical grid in China, along with the TD simulation, demonstrates that the proposed method avoids massive simulations of all contingencies as well as provides detail information of severe ones, which is effective for security analysis of practical power grids.