Visible to the public Biblio

Found 213 results

Filters: Keyword is static analysis  [Clear All Filters]
2023-09-20
Salsabila, Hanifah, Mardhiyah, Syafira, Budiarto Hadiprakoso, Raden.  2022.  Flubot Malware Hybrid Analysis on Android Operating System. 2022 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS). :202—206.
The rising use of smartphones each year is matched by the development of the smartphone's operating system, Android. Due to the immense popularity of the Android operating system, many unauthorized users (in this case, the attackers) wish to exploit this vulnerability to get sensitive data from every Android user. The flubot malware assault, which happened in 2021 and targeted Android devices practically globally, is one of the attacks on Android smartphones. It was known at the time that the flubot virus stole information, particularly from banking applications installed on the victim's device. To prevent this from happening again, we research the signature and behavior of flubot malware. In this study, a hybrid analysis will be conducted on three samples of flubot malware that are available on the open-source Hatching Triage platform. Using the Android Virtual Device (AVD) as the primary environment for malware installation, the analysis was conducted with the Android Debug Bridge (ADB) and Burpsuite as supporting tools for dynamic analysis. During the static analysis, the Mobile Security Framework (MobSF) and the Bytecode Viewer were used to examine the source code of the three malware samples. Analysis of the flubot virus revealed that it extracts or drops dex files on the victim's device, where the file is the primary malware. The Flubot virus will clone the messaging application or Short Message Service (SMS) on the default device. Additionally, we discovered a form of flubot malware that operates as a Domain Generation Algorithm (DGA) and communicates with its Command and Control (C&C) server.
Mantoro, Teddy, Fahriza, Muhammad Elky, Agni Catur Bhakti, Muhammad.  2022.  Effective of Obfuscated Android Malware Detection using Static Analysis. 2022 IEEE 8th International Conference on Computing, Engineering and Design (ICCED). :1—5.
The effective security system improvement from malware attacks on the Android operating system should be updated and improved. Effective malware detection increases the level of data security and high protection for the users. Malicious software or malware typically finds a means to circumvent the security procedure, even when the user is unaware whether the application can act as malware. The effectiveness of obfuscated android malware detection is evaluated by collecting static analysis data from a data set. The experiment assesses the risk level of which malware dataset using the hash value of the malware and records malware behavior. A set of hash SHA256 malware samples has been obtained from an internet dataset and will be analyzed using static analysis to record malware behavior and evaluate which risk level of the malware. According to the results, most of the algorithms provide the same total score because of the multiple crime inside the malware application.
Ismael, Maher F., Thanoon, Karam H..  2022.  Investigation Malware Analysis Depend on Reverse Engineering Using IDAPro. 2022 8th International Conference on Contemporary Information Technology and Mathematics (ICCITM). :227—231.
Any software that runs malicious payloads on victims’ computers is referred to as malware. It is an increasing threat that costs people, businesses, and organizations a lot of money. Attacks on security have developed significantly in recent years. Malware may infiltrate both offline and online media, like: chat, SMS, and spam (email, or social media), because it has a built-in defensive mechanism and may conceal itself from antivirus software or even corrupt it. As a result, there is an urgent need to detect and prevent malware before it damages critical assets around the world. In fact, there are lots of different techniques and tools used to combat versus malware. In this paper, the malware samples were analyzing in the Virtual Box environment using in-depth analysis based on reverse engineering using advanced static malware analysis techniques. The results Obtained from malware analysis which represent a set of valuable information, all anti-malware and anti-virus program companies need for in order to update their products.
Khalil, Md Yusuf, Vivek, Anand, Kumar, Paul, Antarlina, Grover, Rahul.  2022.  PDF Malware Analysis. 2022 7th International Conference on Computing, Communication and Security (ICCCS). :1—4.
This document addresses the issue of the actual security level of PDF documents. Two types of detection approaches are utilized to detect dangerous elements within malware: static analysis and dynamic analysis. Analyzing malware binaries to identify dangerous strings, as well as reverse-engineering is included in static analysis for t1he malware to disassemble it. On the other hand, dynamic analysis monitors malware activities by running them in a safe environment, such as a virtual machine. Each method has its own set of strengths and weaknesses, and it is usually best to employ both methods while analyzing malware. Malware detection could be simplified without sacrificing accuracy by reducing the number of malicious traits. This may allow the researcher to devote more time to analysis. Our worry is that there is no obvious need to identify malware with numerous functionalities when it isn't necessary. We will solve this problem by developing a system that will identify if the given file is infected with malware or not.
2023-09-18
Pranav, Putsa Rama Krishna, Verma, Sachin, Shenoy, Sahana, Saravanan, S..  2022.  Detection of Botnets in IoT Networks using Graph Theory and Machine Learning. 2022 6th International Conference on Trends in Electronics and Informatics (ICOEI). :590—597.
The Internet of things (IoT) is proving to be a boon in granting internet access to regularly used objects and devices. Sensors, programs, and other innovations interact and trade information with different gadgets and frameworks over the web. Even in modern times, IoT gadgets experience the ill effects of primary security threats, which expose them to many dangers and malware, one among them being IoT botnets. Botnets carry out attacks by serving as a vector and this has become one of the significant dangers on the Internet. These vectors act against associations and carry out cybercrimes. They are used to produce spam, DDOS attacks, click frauds, and steal confidential data. IoT gadgets bring various challenges unlike the common malware on PCs and Android devices as IoT gadgets have heterogeneous processor architecture. Numerous researches use static or dynamic analysis for detection and classification of botnets on IoT gadgets. Most researchers haven't addressed the multi-architecture issue and they use a lot of computing resources for analyzing. Therefore, this approach attempts to classify botnets in IoT by using PSI-Graphs which effectively addresses the problem of encryption in IoT botnet detection, tackles the multi-architecture problem, and reduces computation time. It proposes another methodology for describing and recognizing botnets utilizing graph-based Machine Learning techniques and Exploratory Data Analysis to analyze the data and identify how separable the data is to recognize bots at an earlier stage so that IoT devices can be prevented from being attacked.
Oshio, Kei, Takada, Satoshi, Han, Chansu, Tanaka, Akira, Takeuchi, Jun'ichi.  2022.  Poster: Flexible Function Estimation of IoT Malware Using Graph Embedding Technique. 2022 IEEE Symposium on Computers and Communications (ISCC). :1—3.
Most IoT malware is variants generated by editing and reusing parts of the functions based on publicly available source codes. In our previous study, we proposed a method to estimate the functions of a specimen using the Function Call Sequence Graph (FCSG), which is a directed graph of execution sequence of function calls. In the FCSG-based method, the subgraph corresponding to a malware functionality is manually created and called a signature-FSCG. The specimens with the signature-FSCG are expected to have the corresponding functionality. However, this method cannot detect the specimens with a slightly different subgraph from the signature-FSCG. This paper found that these specimens were supposed to have the same functionality for a signature-FSCG. These specimens need more flexible signature matching, and we propose a graph embedding technique to realize it.
2023-04-14
Turnip, Togu Novriansyah, Aruan, Hotma, Siagian, Anita Lasmaria, Siagian, Leonardo.  2022.  Web Browser Extension Development of Structured Query Language Injection Vulnerability Detection Using Long Short-Term Memory Algorithm. 2022 IEEE International Conference of Computer Science and Information Technology (ICOSNIKOM). :1—5.
Structured Query Language Injection (SQLi) is a client-side application vulnerability that allows attackers to inject malicious SQL queries with harmful intents, including stealing sensitive information, bypassing authentication, and even executing illegal operations to cause more catastrophic damage to users on the web application. According to OWASP, the top 10 harmful attacks against web applications are SQL Injection attacks. Moreover, based on data reports from the UK's National Fraud Authority, SQL Injection is responsible for 97% of data exposures. Therefore, in order to prevent the SQL Injection attack, detection SQLi system is essential. The contribution of this research is securing web applications by developing a browser extension for Google Chrome using Long Short-Term Memory (LSTM), which is a unique kind of RNN algorithm capable of learning long-term dependencies like SQL Injection attacks. The results of the model will be deployed in static analysis in a browser extension, and the LSTM algorithm will learn to identify the URL that has to be injected into Damn Vulnerable Web Application (DVWA) as a sample-tested web application. Experimental results show that the proposed SQLi detection model based on the LSTM algorithm achieves an accuracy rate of 99.97%, which means that a reliable client-side can effectively detect whether the URL being accessed contains a SQLi attack or not.
2023-02-17
Inácio, João, Medeiros, Ibéria.  2022.  Effectiveness on C Flaws Checking and Removal. 2022 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks - Supplemental Volume (DSN-S). :33–34.
The use of software daily has become inevitable nowadays. Almost all everyday tools and the most different areas (e.g., medicine or telecommunications) are dependent on software. The C programming language is one of the most used languages for software development, such as operating systems, drivers, embedded systems, and industrial products. Even with the appearance of new languages, it remains one of the most used [1] . At the same time, C lacks verification mechanisms, like array boundaries, leaving the entire responsibility to the developer for the correct management of memory and resources. These weaknesses are at the root of buffer overflows (BO) vulnerabilities, which range the first place in the CWE’s top 25 of the most dangerous weaknesses [2] . The exploitation of BO when existing in critical safety systems, such as railways and autonomous cars, can have catastrophic effects for manufacturers or endanger human lives.
Ruaro, Nicola, Pagani, Fabio, Ortolani, Stefano, Kruegel, Christopher, Vigna, Giovanni.  2022.  SYMBEXCEL: Automated Analysis and Understanding of Malicious Excel 4.0 Macros. 2022 IEEE Symposium on Security and Privacy (SP). :1066–1081.
Malicious software (malware) poses a significant threat to the security of our networks and users. In the ever-evolving malware landscape, Excel 4.0 Office macros (XL4) have recently become an important attack vector. These macros are often hidden within apparently legitimate documents and under several layers of obfuscation. As such, they are difficult to analyze using static analysis techniques. Moreover, the analysis in a dynamic analysis environment (a sandbox) is challenging because the macros execute correctly only under specific environmental conditions that are not always easy to create. This paper presents SYMBEXCEL, a novel solution that leverages symbolic execution to deobfuscate and analyze Excel 4.0 macros automatically. Our approach proceeds in three stages: (1) The malicious document is parsed and loaded in memory; (2) Our symbolic execution engine executes the XL4 formulas; and (3) Our Engine concretizes any symbolic values encountered during the symbolic exploration, therefore evaluating the execution of each macro under a broad range of (meaningful) environment configurations. SYMBEXCEL significantly outperforms existing deobfuscation tools, allowing us to reliably extract Indicators of Compromise (IoCs) and other critical forensics information. Our experiments demonstrate the effectiveness of our approach, especially in deobfuscating novel malicious documents that make heavy use of environment variables and are often not identified by commercial anti-virus software.
ISSN: 2375-1207
Li, Nige, Zhou, Peng, Wang, Tengyan, Chen, Jingnan.  2022.  Control flow integrity check based on LBR register in power 5G environment. 2022 China International Conference on Electricity Distribution (CICED). :1211–1216.
This paper proposes a control flow integrity checking method based on the LBR register: through an analysis of the static target program loaded binary modules, gain function attributes such as borders and build the initial transfer of legal control flow boundary, real-time maintenance when combined with the dynamic execution of the program flow of control transfer record, build a complete profile control flow transfer security; Get the call location of /bin/sh or system() in the program to build an internal monitor for control-flow integrity checks. In the process of program execution, on the one hand, the control flow transfer outside the outline is judged as the abnormal control flow transfer with attack threat; On the other hand, abnormal transitions across the contour are picked up by an internal detector. In this method, by identifying abnormal control flow transitions, attacks are initially detected before the attack code is executed, while some attacks that bypass the coarse-grained verification of security profile are captured by the refined internal detector of control flow integrity. This method reduces the cost of control flow integrity check by using the safety profile analysis of coarse-grained check. In addition, a fine-grained shell internal detector is inserted into the contour to improve the safety performance of the system and achieve a good balance between performance and efficiency.
2023-02-03
Li, Mingxuan, Li, Feng, Yin, Jun, Fei, Jiaxuan, Chen, Jia.  2022.  Research on Security Vulnerability Mining Technology for Terminals of Electric Power Internet of Things. 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC). 6:1638–1642.
Aiming at the specificity and complexity of the power IoT terminal, a method of power IoT terminal firmware vulnerability detection based on memory fuzzing is proposed. Use the method of bypassing the execution to simulate and run the firmware program, dynamically monitor and control the execution of the firmware program, realize the memory fuzzing test of the firmware program, design an automatic vulnerability exploitability judgment plug-in for rules and procedures, and provide power on this basis The method and specific process of the firmware vulnerability detection of the IoT terminal. The effectiveness of the method is verified by an example.
ISSN: 2693-289X
Zou, Zhenwan, Yin, Jun, Yang, Ling, Luo, Cheng, Fei, Jiaxuan.  2022.  Research on Nondestructive Vulnerability Detection Technology of Power Industrial Control System. 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC). 6:1591–1594.

The power industrial control system is an important part of the national critical Information infrastructure. Its security is related to the national strategic security and has become an important target of cyber attacks. In order to solve the problem that the vulnerability detection technology of power industrial control system cannot meet the requirement of non-destructive, this paper proposes an industrial control vulnerability analysis technology combined with dynamic and static analysis technology. On this basis, an industrial control non-destructive vulnerability detection system is designed, and a simulation verification platform is built to verify the effectiveness of the industrial control non-destructive vulnerability detection system. These provide technical support for the safety protection research of the power industrial control system.

ISSN: 2693-289X

2023-02-02
Mansoor, Niloofar, Muske, Tukaram, Serebrenik, Alexander, Sharif, Bonita.  2022.  An Empirical Assessment on Merging and Repositioning of Static Analysis Alarms. 2022 IEEE 22nd International Working Conference on Source Code Analysis and Manipulation (SCAM). :219–229.
Static analysis tools generate a large number of alarms that require manual inspection. In prior work, repositioning of alarms is proposed to (1) merge multiple similar alarms together and replace them by a fewer alarms, and (2) report alarms as close as possible to the causes for their generation. The premise is that the proposed merging and repositioning of alarms will reduce the manual inspection effort. To evaluate the premise, this paper presents an empirical study with 249 developers on the proposed merging and repositioning of static alarms. The study is conducted using static analysis alarms generated on \$C\$ programs, where the alarms are representative of the merging vs. non-merging and repositioning vs. non-repositioning situations in real-life code. Developers were asked to manually inspect and determine whether assertions added corresponding to alarms in \$C\$ code hold. Additionally, two spatial cognitive tests are also done to determine relationship in performance. The empirical evaluation results indicate that, in contrast to expectations, there was no evidence that merging and repositioning of alarms reduces manual inspection effort or improves the inspection accuracy (at times a negative impact was found). Results on cognitive abilities correlated with comprehension and alarm inspection accuracy.
Utture, Akshay, Palsberg, Jens.  2022.  Fast and Precise Application Code Analysis using a Partial Library. 2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE). :934–945.
Long analysis times are a key bottleneck for the widespread adoption of whole-program static analysis tools. Fortunately, however, a user is often only interested in finding errors in the application code, which constitutes a small fraction of the whole program. Current application-focused analysis tools overapproximate the effect of the library and hence reduce the precision of the analysis results. However, empirical studies have shown that users have high expectations on precision and will ignore tool results that don't meet these expectations. In this paper, we introduce the first tool QueryMax that significantly speeds up an application code analysis without dropping any precision. QueryMax acts as a pre-processor to an existing analysis tool to select a partial library that is most relevant to the analysis queries in the application code. The selected partial library plus the application is given as input to the existing static analysis tool, with the remaining library pointers treated as the bottom element in the abstract domain. This achieves a significant speedup over a whole-program analysis, at the cost of a few lost errors, and with no loss in precision. We instantiate and run experiments on QueryMax for a cast-check analysis and a null-pointer analysis. For a particular configuration, QueryMax enables these two analyses to achieve, relative to a whole-program analysis, an average recall of 87%, a precision of 100% and a geometric mean speedup of 10x.
Chiari, Michele, De Pascalis, Michele, Pradella, Matteo.  2022.  Static Analysis of Infrastructure as Code: a Survey. 2022 IEEE 19th International Conference on Software Architecture Companion (ICSA-C). :218–225.
The increasing use of Infrastructure as Code (IaC) in DevOps leads to benefits in speed and reliability of deployment operation, but extends to infrastructure challenges typical of software systems. IaC scripts can contain defects that result in security and reliability issues in the deployed infrastructure: techniques for detecting and preventing them are needed. We analyze and survey the current state of research in this respect by conducting a literature review on static analysis techniques for IaC. We describe analysis techniques, defect categories and platforms targeted by tools in the literature.
Samhi, Jordan, Gao, Jun, Daoudi, Nadia, Graux, Pierre, Hoyez, Henri, Sun, Xiaoyu, Allix, Kevin, Bissyandè, Tegawende F., Klein, Jacques.  2022.  JuCify: A Step Towards Android Code Unification for Enhanced Static Analysis. 2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE). :1232–1244.
Native code is now commonplace within Android app packages where it co-exists and interacts with Dex bytecode through the Java Native Interface to deliver rich app functionalities. Yet, state-of-the-art static analysis approaches have mostly overlooked the presence of such native code, which, however, may implement some key sensitive, or even malicious, parts of the app behavior. This limitation of the state of the art is a severe threat to validity in a large range of static analyses that do not have a complete view of the executable code in apps. To address this issue, we propose a new advance in the ambitious research direction of building a unified model of all code in Android apps. The JUCIFY approach presented in this paper is a significant step towards such a model, where we extract and merge call graphs of native code and bytecode to make the final model readily-usable by a common Android analysis framework: in our implementation, JUCIFY builds on the Soot internal intermediate representation. We performed empirical investigations to highlight how, without the unified model, a significant amount of Java methods called from the native code are “unreachable” in apps' callgraphs, both in goodware and malware. Using JUCIFY, we were able to enable static analyzers to reveal cases where malware relied on native code to hide invocation of payment library code or of other sensitive code in the Android framework. Additionally, JUCIFY'S model enables state-of-the-art tools to achieve better precision and recall in detecting data leaks through native code. Finally, we show that by using JUCIFY we can find sensitive data leaks that pass through native code.
Muske, Tukaram, Serebrenik, Alexander.  2022.  Classification and Ranking of Delta Static Analysis Alarms. 2022 IEEE 22nd International Working Conference on Source Code Analysis and Manipulation (SCAM). :197–207.

Static analysis tools help to detect common pro-gramming errors but generate a large number of false positives. Moreover, when applied to evolving software systems, around 95 % of alarms generated on a version are repeated, i.e., they have also been generated on the previous version. Version-aware static analysis techniques (VSATs) have been proposed to suppress the repeated alarms that are not impacted by the code changes between the two versions. The alarms reported by VSATs after the suppression, called delta alarms, still constitute 63% of the tool-generated alarms. We observe that delta alarms can be further postprocessed using their corresponding code changes: the code changes due to which VSATs identify them as delta alarms. However, none of the existing VSATs or alarms postprocessing techniques postprocesses delta alarms using the corresponding code changes. Based on this observation, we use the code changes to classify delta alarms into six classes that have different priorities assigned to them. The assignment of priorities is based on the type of code changes and their likelihood of actually impacting the delta alarms. The ranking of alarms, obtained by prioritizing the classes, can help suppress alarms that are ranked lower, when resources to inspect all the tool-generated alarms are limited. We performed an empirical evaluation using 9789 alarms generated on 59 versions of seven open source C applications. The evaluation results indicate that the proposed classification and ranking of delta alarms help to identify, on average, 53 % of delta alarms as more likely to be false positives than the others.

Shi, Haoxiang, Liu, Wu, Liu, Jingyu, Ai, Jun, Yang, Chunhui.  2022.  A Software Defect Location Method based on Static Analysis Results. 2022 9th International Conference on Dependable Systems and Their Applications (DSA). :876–886.

Code-graph based software defect prediction methods have become a research focus in SDP field. Among them, Code Property Graph is used as a form of data representation for code defects due to its ability to characterize the structural features and dependencies of defect codes. However, since the coarse granularity of Code Property Graph, redundant information which is not related to defects often attached to the characterization of software defects. Thus, it is a problem to be solved in how to locate software defects at a finer granularity in Code Property Graph. Static analysis is a technique for identifying software defects using set defect rules, and there are many proven static analysis tools in the industry. In this paper, we propose a method for locating specific types of defects in the Code Property Graph based on the result of static analysis tool. Experiments show that the location method based on static analysis results can effectively predict the location of specific defect types in real software program.

Odermatt, Martin, Marcilio, Diego, Furia, Carlo A..  2022.  Static Analysis Warnings and Automatic Fixing: A Replication for C\# Projects. 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). :805–816.

Static analyzers have become increasingly popular both as developer tools and as subjects of empirical studies. Whereas static analysis tools exist for disparate programming languages, the bulk of the empirical research has focused on the popular Java programming language. In this paper, we investigate to what extent some known results about using static analyzers for Java change when considering C\#-another popular object-oriented language. To this end, we combine two replications of previous Java studies. First, we study which static analysis tools are most widely used among C\# developers, and which warnings are more commonly reported by these tools on open-source C\# projects. Second, we develop and empirically evaluate EagleRepair: a technique to automatically fix code in response to static analysis warnings; this is a replication of our previous work for Java [20]. Our replication indicates, among other things, that 1) static code analysis is fairly popular among C\# developers too; 2) Re-Sharper is the most widely used static analyzer for C\#; 3) several static analysis rules are commonly violated in both Java and C\# projects; 4) automatically generating fixes to static code analysis warnings with good precision is feasible in C\#. The EagleRepair tool developed for this research is available as open source.

Moon, S. J., Nagalingam, D., Ngow, Y. T., Quah, A. C. T..  2022.  Combining Enhanced Diagnostic-Driven Analysis Scheme and Static Near Infrared Photon Emission Microscopy for Effective Scan Failure Debug. 2022 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA). :1–6.
Software based scan diagnosis is the de facto method for debugging logic scan failures. Physical analysis success rate is high on dies diagnosed with maximum score, one symptom, one suspect and shorter net. This poses a limitation on maximum utilization of scan diagnosis data for PFA. There have been several attempts to combine dynamic fault isolation techniques with scan diagnosis results to enhance the utilization and success rate. However, it is not a feasible approach for foundry due to limited product design and test knowledge and hardware requirements such as probe card and tester. Suitable for a foundry, an enhanced diagnosis-driven analysis scheme was proposed in [1] that classifies the failures as frontend-of-line (FEOL) and backend-of-line (BEOL) improving the die selection process for PFA. In this paper, static NIR PEM and defect prediction approach are applied on dies that are already classified as FEOL and BEOL failures yet considered unsuitable for PFA due to low score, multiple symptoms, and suspects. Successful case studies are highlighted to showcase the effectiveness of using static NIR PEM as the next level screening process to further maximize the scan diagnosis data utilization.
Aggarwal, Naman, Aggarwal, Pradyuman, Gupta, Rahul.  2022.  Static Malware Analysis using PE Header files API. 2022 6th International Conference on Computing Methodologies and Communication (ICCMC). :159–162.
In today’s fast pacing world, cybercrimes have time and again proved to be one of the biggest hindrances in national development. According to recent trends, most of the times the victim’s data is breached by trapping it in a phishing attack. Security and privacy of user’s data has become a matter of tremendous concern. In order to address this problem and to protect the naive user’s data, a tool which may help to identify whether a window executable is malicious or not by doing static analysis on it has been proposed. As well as a comparative study has been performed by implementing different classification models like Logistic Regression, Neural Network, SVM. The static analysis approach used takes into parameters of the executables, analysis of properties obtained from PE Section Headers i.e. API calls. Comparing different model will provide the best model to be used for static malware analysis
Xuan, Liang, Zhang, Chunfei, Tian, Siyuan, Guan, Tianmin, Lei, Lei.  2022.  Integrated Design and Verification of Locomotive Traction Gearbox Based on Finite Element Analysis. 2022 13th International Conference on Mechanical and Aerospace Engineering (ICMAE). :174–183.
This paper use the method of finite element analysis, and comparing and analyzing the split box and the integrated box from two aspects of modal analysis and static analysis. It is concluded that the integrated box has the characteristics of excellent vibration characteristics and high strength tolerance; At the same time, according to the S-N curve of the material and the load spectrum of the box, the fatigue life of the integrated box is 26.24 years by using the fatigue analysis software Fe-safe, which meets the service life requirements; The reliability analysis module PDS is used to calculate the reliability of the box, and the reliability of the integrated box is 96.5999%, which meets the performance requirements.
Yangfang, Ye, Jing, Ma, Wenhui, Zhang, Dekang, Zhang, Shuhua, Zhou, Zhangping, You.  2022.  Static Analysis of Axisymmetric Structure of High Speed Wheel Based on ANSYS. 2022 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA). :1118–1122.
In this paper, the axial symmetry is used to analyze the deformation and stress change of the wheel, so as to reduce the scale of analysis and reduce the cost in industrial production. Firstly, the material properties are defined, then the rotation section of the wheel is established, the boundary conditions are defined, the model is divided by finite element, the angular velocity and pressure load during rotation are applied, and the radial and axial deformation diagram, radial, axial and equivalent stress distribution diagram of the wheel are obtained through analysis and solution. The use of axisymmetric characteristics can reduce the analysis cost in the analysis, and can be applied to materials or components with such characteristics, so as to facilitate the design and improvement of products and reduce the production cost.
Tian, Yingchi, Xiao, Shiwu.  2022.  Parameter sensitivity analysis and adjustment for subsynchronous oscillation stability of doubly-fed wind farms with static var generator. 2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP). :215–219.
The interaction between the transmission system of doubly-fed wind farms and the power grid and the stability of the system have always been widely concerned at home and abroad. In recent years, wind farms have basically installed static var generator (SVG) to improve voltage stability. Therefore, this paper mainly studies the subsynchronous oscillation (SSO) problem in the grid-connected grid-connected doubly-fed wind farm with static var generators. Firstly based on impedance analysis, the sequence impedance model of the doubly-fed induction generator and the static var generator is established by the method. Then, based on the stability criterion of Bode plot and time domain simulation, the influence of the access of the static var generator on the SSO of the system is analyzed. Finally, the sensitivity analysis of the main parameters of the doubly-fed induction generator and the static var generator is carried out. The results show that the highest sensitivity is the proportional gain parameter of the doubly-fed induction generator current inner loop, and its value should be reduced to reduce the risk of SSO of the system.
Yin, Tingting, Zhang, Chao, Ni, Yuandong, Wu, Yixiong, Wong, Taiyu, Luo, Xiapu, Li, Zheming, Guo, Yu.  2022.  An Empirical Study on Implicit Constraints in Smart Contract Static Analysis. 2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP). :31–32.

Smart contracts are usually financial-related, which makes them attractive attack targets. Many static analysis tools have been developed to facilitate the contract audit process, but not all of them take account of two special features of smart contracts: (1) The external variables, like time, are constrained by real-world factors; (2) The internal variables persist between executions. Since these features import implicit constraints into contracts, they significantly affect the performance of static tools, such as causing errors in reachability analysis and resulting in false positives. In this paper, we conduct a systematic study on implicit constraints from three aspects. First, we summarize the implicit constraints in smart contracts. Second, we evaluate the impact of such constraints on the state-of-the-art static tools. Third, we propose a lightweight but effective mitigation method named ConSym to deal with such constraints and integrate it into OSIRIS. The evaluation result shows that ConSym can filter out 96% of false positives and reduce false negatives by two-thirds.