Visible to the public Biblio

Filters: Keyword is Media Access Protocol  [Clear All Filters]
2023-08-25
Riyanto, Supangkat, Suhono Harso, Iskandar.  2022.  Survey on MAC Protocol of Mobile Ad hoc Network for Tactical Data Link System. 2022 International Conference on Information Technology Systems and Innovation (ICITSI). :134–137.
Tactical Data Link (TDL) is one of the important elements in Network Centric Warfare (NCW). TDL provides the means for rapid exchange of tactical information between air, ground, sea units and command centers. In military operations, TDL has high demands for resilience, responsiveness, reliability, availability and security. MANET has characteristics that are suitable for the combat environment, namely the ability to self-form and self-healing so that this network may be applied to the TDL system. To produce high performance in MANET adapted for TDL system, an efficient MAC Protocol method is needed. This paper provides a survey of several MAC Protocol methods on a tactical MANET. In this paper also suggests some improvements to the MANET MAC protocol to improve TDL system performance.
2023-05-19
Soosahabi, Reza, Bayoumi, Magdy.  2022.  On Securing MAC Layer Broadcast Signals Against Covert Channel Exploitation in 5G, 6G & Beyond. 2022 IEEE Future Networks World Forum (FNWF). :486—493.
In this work, we propose a novel framework to identify and mitigate a recently disclosed covert channel scheme exploiting unprotected broadcast messages in cellular MAC layer protocols. Examples of covert channel are used in data exfiltration, remote command-and-control (CnC) and espionage. Responsibly disclosed to GSMA (CVD-2021-0045), the SPAR-ROW covert channel scheme exploits the downlink power of LTE/5G base-stations that broadcast contention resolution identity (CRI) from any anonymous device according to the 3GPP standards. Thus, the SPARROW devices can covertly relay short messages across long-distance which can be potentially harmful to critical infrastructure. The SPARROW schemes can also complement the solutions for long-range M2M applications. This work investigates the security vs. performance trade-off in CRI-based contention resolution mechanisms. Then it offers a rig-orously designed method to randomly obfuscate CRI broadcast in future 5G/6G standards. Compared to CRI length reduction, the proposed method achieves considerable protection against SPARROW exploitation with less impact on the random-access performance as shown in the numerical results.
2023-01-13
Mohsin, Ali, Aurangzeb, Sana, Aleem, Muhammad, Khan, Muhammad Taimoor.  2022.  On the Performance and Scalability of Simulators for Improving Security and Safety of Smart Cities. 2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA). :1–8.
Simulations have gained paramount importance in terms of software development for wireless sensor networks and have been a vital focus of the scientific community in this decade to provide efficient, secure, and safe communication in smart cities. Network Simulators are widely used for the development of safe and secure communication architectures in smart city. Therefore, in this technical survey report, we have conducted experimental comparisons among ten different simulation environments that can be used to simulate smart-city operations. We comprehensively analyze and compare simulators COOJA, NS-2 with framework Mannasim, NS-3, OMNeT++ with framework Castalia, WSNet, TOSSIM, J-Sim, GloMoSim, SENSE, and Avrora. These simulators have been run eight times each and comparison among them is critically scrutinized. The main objective behind this research paper is to assist developers and researchers in selecting the appropriate simulator against the scenario to provide safe and secure wired and wireless networks. In addition, we have discussed the supportive simulation environments, functions, and operating modes, wireless channel models, energy consumption models, physical, MAC, and network-layer protocols in detail. The selection of these simulation frameworks is based on features, literature, and important characteristics. Lastly, we conclude our work by providing a detailed comparison and describing the pros and cons of each simulator.
2021-10-04
Tian, Yanhui, Zhang, Weiyan, Zhou, Dali, Kong, Siqi, Ren, Ming, Li, Danping.  2020.  Research on Multi-object-oriented Automatic Defense Technology for ARP Attack. 2020 IEEE International Conference on Information Technology,Big Data and Artificial Intelligence (ICIBA). 1:150–153.
ARP-attack often occurs in LAN network [1], which directly affects the user's online experience. The common type of ARP-attack is MITM-Attack (Man-in-the-Middle Attack) with two-types, disguising a host or a gateway. Common means of ARP-attack prevention is by deploying network-security equipment or binding IP-MAC in LAN manually[10]. This paper studies an automatic ARP-attack prevention technology for multi-object, based on the domain-control technology and batch-processing technology. Compared with the common ARP-attack-prevention measure, this study has advantages of low-cost, wide-application, and maintenance-free. By experimentally researching, this paper demonstrates the research correctness and technical feasibility. This research result, multi-object-oriented automatic defense technology for ARP-attacking, can apply to enterprise network.
2021-09-30
Al Guqhaiman, Ahmed, Akanbi, Oluwatobi, Aljaedi, Amer, Chow, C. Edward.  2020.  Lightweight Multi-Factor Authentication for Underwater Wireless Sensor Networks. 2020 International Conference on Computational Science and Computational Intelligence (CSCI). :188–194.
Underwater Wireless Sensor Networks (UWSNs) are liable to malicious attacks due to limited bandwidth, limited power, high propagation delay, path loss, and variable speed. The major differences between UWSNs and Terrestrial Wireless Sensor Networks (TWSNs) necessitate a new mechanism to secure UWSNs. The existing Media Access Control (MAC) and routing protocols have addressed the network performance of UWSNs, but are vulnerable to several attacks. The secure MAC and routing protocols must exist to detect Sybil, Blackhole, Wormhole, Hello Flooding, Acknowledgment Spoofing, Selective Forwarding, Sinkhole, and Exhaustion attacks. These attacks can disrupt or disable the network connection. Hence, these attacks can degrade the network performance and total loss can be catastrophic in some applications, like monitoring oil/gas spills. Several researchers have studied the security of UWSNs, but most of the works detect malicious attacks solely based on a certain predefined threshold. It is not optimal to detect malicious attacks after the threshold value is met. In this paper, we propose a multi-factor authentication model that is based on zero-knowledge proof to detect malicious activities and secure UWSNs from several attacks.
2021-09-01
Ahmed, MMeraj, Vashist, Abhishek, Pudukotai Dinakarrao, Sai Manoj, Ganguly, Amlan.  2020.  Architecting a Secure Wireless Interconnect for Multichip Communication: An ML Approach. 2020 Asian Hardware Oriented Security and Trust Symposium (AsianHOST). :1—6.
Compute-intensive platforms such as micro-servers and embedded systems have already undergone a shift from a single-chip to multichip architecture to achieve better yield and lower cost. However, performance of multichip systems is limited by the latency and power-hungry chip-to-chip wired I/Os. On the other hand, wireless interconnections are emerging as an energy-efficient and low latency interconnect solution for such multichip systems as it can mask long multi-hop off-chip wired I/O communication. Despite efficient communication, the unguided on and off-chip wireless communication introduce security vulnerabilities in the system. In this work, we propose a reconfigurable, secure millimeter-wave (mm-Wave) wireless interconnection architecture (AReS) for multichip systems capable of detecting and defending against emerging threats including Hardware Trojans (HTs) and Denial-of-Service (DoS) using a Machine Learning (ML)-based approach. The ML-based approach is used to classify internal and external attack to enable the required defense mechanism. To serve this purpose, we design a reconfigurable Medium Access Control (MAC) and a suitable communication protocol to enable sustainable communication even under jamming attack from both internal and external attackers. The proposed architecture also reuses the in-built test infrastructure to detect and withstand a persistent jamming attack in a wireless multichip system. Through simulation, we show that, the proposed wireless interconnection can sustain chip-to-chip communication even under persistent jamming attack with an average 1.44xand 1.56x latency degradation for internal and external attacks respectively for application-specific traffic.
2020-12-21
Portaluri, G., Giordano, S..  2020.  Gambling on fairness: a fair scheduler for IIoT communications based on the shell game. 2020 IEEE 25th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). :1–6.
The Industrial Internet of Things (IIoT) paradigm represents nowadays the cornerstone of the industrial automation since it has introduced new features and services for different environments and has granted the connection of industrial machine sensors and actuators both to local processing and to the Internet. One of the most advanced network protocol stack for IoT-IIoT networks that have been developed is 6LoWPAN which supports IPv6 on top of Low-power Wireless Personal Area Networks (LoWPANs). 6LoWPAN is usually coupled with the IEEE 802.15.4 low-bitrate and low-energy MAC protocol that relies on the time-slotted channel hopping (TSCH) technique. In TSCH networks, a coordinator node synchronizes all end-devices and specifies whether (and when) they can transmit or not in order to improve their energy efficiency. In this scenario, the scheduling strategy adopted by the coordinator plays a crucial role that impacts dramatically on the network performance. In this paper, we present a novel scheduling strategy for time-slot allocation in IIoT communications which aims at the improvement of the overall network fairness. The proposed strategy mimics the well-known shell game turning the totally unfair mechanics of this game into a fair scheduling strategy. We compare our proposal with three allocation strategies, and we evaluate the fairness of each scheduler showing that our allocator outperforms the others.
2020-12-02
Tsurumi, R., Morita, M., Obata, H., Takano, C., Ishida, K..  2018.  Throughput Control Method Between Different TCP Variants Based on SP-MAC Over WLAN. 2018 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW). :1—2.

We have proposed the Media Access Control method based on the Synchronization Phenomena of coupled oscillators (SP-MAC) to improve a total throughput of wireless terminals connected to a Access Point. SP-MAC can avoid the collision of data frames that occur by applying Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) based on IEEE 802.11 in Wireless local area networks (WLAN). Furthermore, a new throughput guarantee control method based on SP-MAC has been proposed. This method enable each terminal not only to avoid the collision of frames but also to obtain the requested throughput by adjusting the parameters of SP-MAC. In this paper, we propose a new throughput control method that realizes the fairness among groups of terminals that use the different TCP versions, by taking the advantage of our method that is able to change acquired throughput by adjusting parameters. Moreover, we confirm the effectiveness of the proposed method by the simulation evaluation.

2019-12-05
Yu, Yiding, Wang, Taotao, Liew, Soung Chang.  2018.  Deep-Reinforcement Learning Multiple Access for Heterogeneous Wireless Networks. 2018 IEEE International Conference on Communications (ICC). :1-7.

This paper investigates the use of deep reinforcement learning (DRL) in the design of a "universal" MAC protocol referred to as Deep-reinforcement Learning Multiple Access (DLMA). The design framework is partially inspired by the vision of DARPA SC2, a 3-year competition whereby competitors are to come up with a clean-slate design that "best share spectrum with any network(s), in any environment, without prior knowledge, leveraging on machine-learning technique". While the scope of DARPA SC2 is broad and involves the redesign of PHY, MAC, and Network layers, this paper's focus is narrower and only involves the MAC design. In particular, we consider the problem of sharing time slots among a multiple of time-slotted networks that adopt different MAC protocols. One of the MAC protocols is DLMA. The other two are TDMA and ALOHA. The DRL agents of DLMA do not know that the other two MAC protocols are TDMA and ALOHA. Yet, by a series of observations of the environment, its own actions, and the rewards - in accordance with the DRL algorithmic framework - a DRL agent can learn the optimal MAC strategy for harmonious co-existence with TDMA and ALOHA nodes. In particular, the use of neural networks in DRL (as opposed to traditional reinforcement learning) allows for fast convergence to optimal solutions and robustness against perturbation in hyper- parameter settings, two essential properties for practical deployment of DLMA in real wireless networks.

2018-05-09
Hamouda, R. Ben, Hafaiedh, I. Ben.  2017.  Formal Modeling and Verification of a Wireless Body Area Network (WBAN) Protocol: S-TDMA Protocol. 2017 International Conference on Internet of Things, Embedded Systems and Communications (IINTEC). :72–77.

WBANs integrate wearable and implanted devices with wireless communication and information processing systems to monitor the well-being of an individual. Various MAC (Medium Access Control) protocols with different objectives have been proposed for WBANs. The fact that any flaw in these critical systems may lead to the loss of one's life implies that testing and verifying MAC's protocols for such systems are on the higher level of importance. In this paper, we firstly propose a high-level formal and scalable model with timing aspects for a MAC protocol particularly designed for WBANs, named S-TDMA (Statistical frame based TDMA protocol). The protocol uses TDMA (Time Division Multiple Access) bus arbitration, which requires temporal aspect modeling. Secondly, we propose a formal validation of several relevant properties such as deadlock freedom, fairness and mutual exclusion of this protocol at a high level of abstraction. The protocol was modeled using a composition of timed automata components, and verification was performed using a real-time model checker.

2018-03-19
Mavani, M., Asawa, K..  2017.  Experimental Study of IP Spoofing Attack in 6LoWPAN Network. 2017 7th International Conference on Cloud Computing, Data Science Engineering - Confluence. :445–449.

6L0WPAN is a communication protocol for Internet of Things. 6LoWPAN is IPv6 protocol modified for low power and lossy personal area networks. 6LoWPAN inherits threats from its predecessors IPv4 and IPv6. IP spoofing is a known attack prevalent in IPv4 and IPv6 networks but there are new vulnerabilities which creates new paths, leading to the attack. This study performs the experimental study to check the feasibility of performing IP spoofing attack on 6LoWPAN Network. Intruder misuses 6LoWPAN control messages which results into wrong IPv6-MAC binding in router. Attack is also simulated in cooja simulator. Simulated results are analyzed for finding cost to the attacker in terms of energy and memory consumption.

2015-05-05
Lopes Alcantara Batista, B., Lima de Campos, G.A., Fernandez, M.P..  2014.  Flow-based conflict detection in OpenFlow networks using first-order logic. Computers and Communication (ISCC), 2014 IEEE Symposium on. :1-6.

The OpenFlow architecture is a proposal from the Clean Slate initiative to define a new Internet architecture where the network devices are simple, and the control and management plane is performed by a centralized controller. The simplicity and centralization architecture makes it reliable and inexpensive. However, this architecture does not provide mechanisms to detect conflicting in flows, allowing that unreachable flows can be configured in the network elements, and the network may not behave as expected. This paper proposes an approach to conflict detection using first-order logic to define possible antagonisms and employ an inference engine to detect conflicting flows before the OpenFlow controller implement in the network elements.
 

2015-05-04
Ward, J.R., Younis, M..  2014.  A Metric for Evaluating Base Station Anonymity in Acknowledgement-Based Wireless Sensor Networks. Military Communications Conference (MILCOM), 2014 IEEE. :216-221.

In recent years, Wireless Sensor Networks (WSNs) have become valuable assets to both the commercial and military communities with applications ranging from industrial automation and product tracking to intrusion detection at a hostile border. A typical WSN topology allows sensors to act as data sources that forward their measurements to a central sink or base station (BS). The unique role of the BS makes it a natural target for an adversary that desires to achieve the most impactful attack possible against a WSN. An adversary may employ traffic analysis techniques to identify the BS based on network traffic flow even when the WSN implements conventional security mechanisms. This motivates a need for WSN operators to achieve improved BS anonymity to protect the identity, role, and location of the BS. Although a variety of countermeasures have been proposed to improve BS anonymity, those techniques are typically evaluated based on a WSN that does not employ acknowledgements. In this paper we propose an enhanced evidence theory metric called Acknowledgement-Aware Evidence Theory (AAET) that more accurately characterizes BS anonymity in WSNs employing acknowledgements. We demonstrate AAET's improved robustness to a variety of configurations through simulation.