Biblio
A Mobile Ad Hoc Network (MANET) is considered a type of network which is wireless and has no fixed infrastructure composed of a set if nodes in self organized fashion which are randomly, frequently and unpredictably mobile. MANETs can be applied in both military and civil environments ones because of its numerous applications. This is due to their special characteristics and self-configuration capability. This is due to its dynamic nature, lack of fixed infrastructure, and the no need of being centrally managed; a special type of routing protocols such as Anonymous routing protocols are needed to hide the identifiable information of communicating parties, while preserving the communication secrecy. This paper provides an examination of a comprehensive list of anonymous routing protocols in MANET, focusing their security and performance capabilities.
Wireless sensor networks consist of various sensors that are deployed to monitor the physical world. And many existing security schemes use traditional cryptography theory to protect message content and contextual information. However, we are concerned about location security of nodes. In this paper, we propose an anonymous routing strategy for preserving location privacy (ARPLP), which sets a proxy source node to hide the location of real source node. And the real source node randomly selects several neighbors as receivers until the packets are transmitted to the proxy source. And the proxy source is randomly selected so that the adversary finds it difficult to obtain the location information of the real source node. Meanwhile, our scheme sets a branch area around the sink, which can disturb the adversary by increasing the routing branch. According to the analysis and simulation experiments, our scheme can reduce traffic consumption and communication delay, and improve the security of source node and base station.
Promoting data sharing between organisations is challenging, without the added concerns over having actions traced. Even with encrypted search capabilities, the entities digital location and downloaded information can be traced, leaking information to the hosting organisation. This is a problem for law enforcement and government agencies, where any information leakage is not acceptable, especially for investigations. Anonymous routing is a technique to stop a host learning which agency is accessing information. Many related works for anonymous routing have been proposed, but are designed for Internet traffic, and are over complicated for internal usage. A streaming design for circuit creation is proposed using elliptic curve cryptography. Allowing for a simple anonymous routing solution, which provides fast performance with source and destination anonymity to other organisations.
Anonymous communications are important for many of the applications of mobile ad hoc networks (MANETs) deployed in adversary environments. A major requirement on the network is the ability to provide unidentifiability and unlinkability for mobile nodes and their traffic. Although a number of anonymous secure routing protocols have been proposed, the requirement is not fully satisfied. The existing protocols are vulnerable to the attacks of fake routing packets or denial-of-service broadcasting, even the node identities are protected by pseudonyms. In this paper, we propose a new routing protocol, i.e., authenticated anonymous secure routing (AASR), to satisfy the requirement and defend against the attacks. More specifically, the route request packets are authenticated by a group signature, to defend against potential active attacks without unveiling the node identities. The key-encrypted onion routing with a route secret verification message is designed to prevent intermediate nodes from inferring a real destination. Simulation results have demonstrated the effectiveness of the proposed AASR protocol with improved performance as compared with the existing protocols.
Cognitive radio (CR) networks are becoming an increasingly important part of the wireless networking landscape due to the ever-increasing scarcity of spectrum resources throughout the world. Nowadays CR media is becoming popular wireless communication media for disaster recovery communication network. Although the operational aspects of CR are being explored vigorously, its security aspects have gained less attention to the research community. The existing research on CR network mainly focuses on the spectrum sensing and allocation, energy efficiency, high throughput, end-to-end delay and other aspect of the network technology. But, very few focuses on the security aspect and almost none focus on the secure anonymous communication in CR networks (CRNs). In this research article we would focus on secure anonymous communication in CR ad hoc networks (CRANs). We would propose a secure anonymous routing for CRANs based on pairing based cryptography which would provide source node, destination node and the location anonymity. Furthermore, the proposed research would protect different attacks those are feasible on CRANs.
Mobile ad hoc networks have the features of open medium, dynamic topology, cooperative algorithms, lack of centralized monitoring etc. Due to these, mobile ad hoc networks are much vulnerable to security attacks when compared to wired networks. There are various routing protocols that have been developed to cope up with the limitations imposed by the ad hoc networks. But none of these routing schemes provide complete unlinkability and unobservability. In this paper we have done a survey about anonymous routing and secure communications in mobile ad hoc networks. Different routing protocols are analyzed based on public/private key pairs and cryptosystems, within that USOR can well protect user privacy against both inside and outside attackers. It is a combination of group signature scheme and ID based encryption scheme. These are run during the route discovery process. We implement USOR on ns2, and then its performance is compared with AODV.