Visible to the public Biblio

Filters: Keyword is Windings  [Clear All Filters]
2023-03-17
Mohammadi, Ali, Badewa, Oluwaseun A., Chulaee, Yaser, Ionel, Dan M., Essakiappan, Somasundaram, Manjrekar, Madhav.  2022.  Direct-Drive Wind Generator Concept with Non-Rare-Earth PM Flux Intensifying Stator and Reluctance Outer Rotor. 2022 11th International Conference on Renewable Energy Research and Application (ICRERA). :582–587.
This paper proposes a novel concept for an electric generator in which both ac windings and permanent magnets (PMs) are placed in the stator. Concentrated windings with a special pattern and phase coils placed in separate slots are employed. The PMs are positioned in a spoke-type field concentrating arrangement, which provides high flux intensification and enables the use of lower remanence and energy non-rare earth magnets. The rotor is exterior to the stator and has a simple and robust reluctance-type configuration without any active electromagnetic excitation components. The principle of operation is introduced based on the concept of virtual work with closed-form analytical airgap flux density distributions. Initial and parametric design studies were performed using electromagnetic FEA for a 3MW direct-drive wind turbine generator employing PMs of different magnetic remanence and specific energy. Results include indices for the goodness of excitation and the goodness of the electric machine designs; loss; and efficiency estimations, indicating that performance comparable to PM synchronous designs employing expensive and critical supply rare-earth PMs may be achieved with non-rare earth PMs using the proposed configuration.
ISSN: 2572-6013
2022-10-04
Wredfors, Antti, Korhonen, Juhamatti, Pyrhönen, Juha, Niemelä, Markku, Silventoinen, Pertti.  2021.  Exciter Remanence Effect Mitigation in a Brushless Synchronous Generator for Test-field Applications. IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society. :1–6.
Brushless synchronous generators (BSG) are typically used to produce an island network whose voltage is close to the nominal voltage of the generator. Generators are often used also in test-field applications where also zero output voltage is needed. The exciter construction and magnetic remanence may lead to a situation where the non-loaded generator terminal voltage cannot be controlled close to zero but a significant voltage is always generated because the exciter remanence. A new brushless synchronous generator excitation and de-excitation converter topology for test applications is proposed. The purpose is to achieve full voltage control from zero to nominal level without modifications to the generator. Insulated-gate bipolar transistor (IGBT) and Field-Programmable Gate Array (FPGA) technology are used to achieve the required fast and accurate control. In the work, simulation models were first derived to characterize the control performance. The proposed converter topology was then verified with the simulation model and tested empirically with a 400 kVA brushless synchronous generator. The results indicate that the exciter remanence and self-excitation can be controlled through the exciter stationary field winding when the proposed converter topology controls the field winding current. Consequently, in highly dynamical situations, the system is unaffected by mechanical stresses and wear in the generator.
2022-02-07
Xuelian, Gao, Dongyan, Zhao, Yi, Hu, Jie, Gan, Wennan, Feng, Ran, Zhang.  2021.  An Active Shielding Layout Design based on Smart Chip. 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). 5:1873–1877.
Usually on the top of Smart Chip covered with active shielding layer to prevent invasive physical exploration tampering attacks on part of the chip's function modules, to obtain the chip's critical storage data and sensitive information. This paper introduces a design based on UMC55 technology, and applied to the safety chip active shielding layer method for layout design, the layout design from the two aspects of the metal shielding line and shielding layer detecting circuit, using the minimum size advantage and layout design process when the depth of hidden shielding line interface and port order connection method and greatly increased the difficulty of physical attack. The layout design can withstand most of the current FIB physical attack technology, and has been applied to the actual smart card design, and it has important practical significance for the security design and attack of the chip.
2022-02-04
Liu, Zhichang, Yin, Xin, Pan, Yuanlin, Xi, Wei, Yin, Xianggen, Liu, Binyan.  2021.  Analysis of zero-mode inrush current characteristics of converter transformers. 2021 56th International Universities Power Engineering Conference (UPEC). :1–6.
In recent years, there have been situations in which the zero-sequence protection of the transformer has been incorrectly operated due to the converter transformer energizing or fault recovery. For converter transformers, maloperation may also occur. However, there is almost no theoretical research on the zero-mode inrush currents of converter transformers. This paper studies the characteristics of the zero-mode inrush currents of the converter transformers, including the relationship between the amplitude and attenuation characteristics of the zero-mode inrush currents of converter transformers, and their relationship with the system resistance, remanence, and closing angle. First, based on the T-type equivalent circuit of the transformer, the equivalent circuit of the zero-mode inrush current of each transformer is obtained. On this basis, the amplitude relationship of the zero-mode inrush currents of different converter transformers is obtained: the zero-mode inrush current of the energizing pole YY transformer becomes larger than the YD transformer, the energized pole YD becomes greater than the YY transformer, and the YY transformer zero-mode inrush current rises from 0. It is also analyzed that the sympathetic interaction will make the attenuation of the converter transformer zero-mode inrush current slower. The system resistance mainly affects the initial attenuation speed, and the later attenuation speed is mainly determined by the converter transformer leakage reactance. Finally, PSCAD modeling and simulation are carried out to verify the accuracy of the theoretical analysis.
2021-08-31
Won, Hoyun, Hong, Yang-Ki, Choi, Minyeong, Yoon, Hwan-sik, Li, Shuhui, Haskew, Tim.  2020.  Novel Efficiency-shifting Radial-Axial Hybrid Interior Permanent Magnet Sychronous Motor for Electric Vehicle. 2020 IEEE Energy Conversion Congress and Exposition (ECCE). :47–52.
A novel efficiency-shifting radial-axial hybrid permanent magnet synchronous motor that can realize two high-efficiency regions at low and high speeds is developed to extend the maximum driving distance and track the reference speed more accurately for electric vehicle application. The motor has two stators, which are radial and axial, to rotate one shared rotor. The rotor employs two combined topologies, i.e., inner surface-inset-mounted and outer V-shaped interior-mounted. For both outer and inner permanent magnets, Nd-Fe-B, having the remanent flux density of 1.23 T and coercivity of 890 kA/m, is used. The simulation result shows that the designed motor exhibits not only high maximum torque of 400 Nm and the maximum speed of 18,000 rpm but also two high-efficiency regions of 97.6 % and 92.0 % at low and high speed, respectively. Lastly, the developed motor shows better performance than corresponding separated radial and axial permanent magnet motor.
2021-02-15
Wu, Y., Olson, G. F., Peretti, L., Wallmark, O..  2020.  Harmonic Plane Decomposition: An Extension of the Vector-Space Decomposition - Part I. IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society. :985–990.
In this first paper of a two-part series, the harmonic plane decomposition is introduced, which is an extension of the vector-space decomposition. In multiphase electrical machines with variable phase-pole configurations, the vector-space decomposition leads to a varying numbers of vector spaces when changing the configuration. Consequently, the model and current control become discontinuous. The method in this paper is based on samples of each single slot currents, similarly to a discrete Fourier transformation in the space domain that accounts for the winding configuration. It unifies the Clarke transformation for all possible phase-pole configurations such that a fixed number of orthogonal harmonic planes are created, which facilitates the current control during reconfigurations. The presented method is not only limited to the modeling of multiphase electrical machines but all kinds of existing machines can be modeled. In the second part of this series, the harmonic plane decomposition will be completed for all types of machine configurations.
2020-11-30
Gerdroodbari, Y. Z., Davarpanah, M., Farhangi, S..  2018.  Remanent Flux Negative Effects on Transformer Diagnostic Test Results and a Novel Approach for Its Elimination. IEEE Transactions on Power Delivery. 33:2938–2945.
Influence of remanent flux on hysteresis curve of the transformer core is addressed in this paper. In addition, its significant negative effect on transformer diagnostic tests is quantified based on experimental studies. Furthermore, a novel approach is proposed to efficiently and quickly eliminate the remanent flux. This approach is evaluated based on simulation studies on a 230/63-kV power transformer. Meanwhile, experimental studies are performed on both 0.2/0.2 and 20/0.4 kV transformers. These studies reveal that the approach not only is well able to eliminate the remanent flux, but also it has various advantages over the commonly used method. In addition, this approach is equally applicable for various power, distribution, and instrument transformer types.
2020-04-24
Luo, Xuesong, Wang, Shaoping.  2018.  Multi-work Condition Modeling and Performance Analysis of Linear Oscillating Actuators. 2018 IEEE International Conference on Prognostics and Health Management (ICPHM). :1—7.

Linear oscillating actuators are emerging electrical motors applied to direct-drive electromechanical systems. They merit high efficiency and quick dynamical property due to the unique structure of spring oscillator. Resonant principle is the base of their high performance, which however, is easily influenced by various load, complex environment and mechanical failure. This paper studies the modeling of linear oscillating actuators in multi-work condition. Three kinds of load are considered in performance evaluation model. Simulations are conducted at different frequencies to obtain the actuator behavior, especially at non-resonance frequencies. A method of constant impedance angle is proposed to search the best working points in sorts of conditions. Eventually, analytical results reflect that the resonant parameter would drift with load, while linear oscillating actuators exhibits robustness in efficiency performance. Several evaluating parameters are concluded to assess the actuator health status.