Visible to the public Harmonic Plane Decomposition: An Extension of the Vector-Space Decomposition - Part I

TitleHarmonic Plane Decomposition: An Extension of the Vector-Space Decomposition - Part I
Publication TypeConference Paper
Year of Publication2020
AuthorsWu, Y., Olson, G. F., Peretti, L., Wallmark, O.
Conference NameIECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society
Date Publishedoct
KeywordsClarke transformation, complex winding factor, compositionality, Current control, cyber physical systems, decomposition, DfT, discrete Fourier transformation, Discrete Fourier transforms, electric current control, electric machines, Harmonic analysis, harmonic plane decomposition, machine vector control, machine windings, Matrix decomposition, Metrics, multiphase electric machines, multiphase electrical machines, power system harmonics, pubcrawl, Stator windings, vector-space decomposition, Windings
AbstractIn this first paper of a two-part series, the harmonic plane decomposition is introduced, which is an extension of the vector-space decomposition. In multiphase electrical machines with variable phase-pole configurations, the vector-space decomposition leads to a varying numbers of vector spaces when changing the configuration. Consequently, the model and current control become discontinuous. The method in this paper is based on samples of each single slot currents, similarly to a discrete Fourier transformation in the space domain that accounts for the winding configuration. It unifies the Clarke transformation for all possible phase-pole configurations such that a fixed number of orthogonal harmonic planes are created, which facilitates the current control during reconfigurations. The presented method is not only limited to the modeling of multiphase electrical machines but all kinds of existing machines can be modeled. In the second part of this series, the harmonic plane decomposition will be completed for all types of machine configurations.
DOI10.1109/IECON43393.2020.9255228
Citation Keywu_harmonic_2020