Visible to the public Biblio

Filters: Keyword is machine learning (ML)  [Clear All Filters]
2023-09-20
Samia, Bougareche, Soraya, Zehani, Malika, Mimi.  2022.  Fashion Images Classification using Machine Learning, Deep Learning and Transfer Learning Models. 2022 7th International Conference on Image and Signal Processing and their Applications (ISPA). :1—5.
Fashion is the way we present ourselves which mainly focuses on vision, has attracted great interest from computer vision researchers. It is generally used to search fashion products in online shopping malls to know the descriptive information of the product. The main objectives of our paper is to use deep learning (DL) and machine learning (ML) methods to correctly identify and categorize clothing images. In this work, we used ML algorithms (support vector machines (SVM), K-Nearest Neirghbors (KNN), Decision tree (DT), Random Forest (RF)), DL algorithms (Convolutionnal Neurals Network (CNN), AlexNet, GoogleNet, LeNet, LeNet5) and the transfer learning using a pretrained models (VGG16, MobileNet and RestNet50). We trained and tested our models online using google colaboratory with Tensorflow/Keras and Scikit-Learn libraries that support deep learning and machine learning in Python. The main metric used in our study to evaluate the performance of ML and DL algorithms is the accuracy and matrix confusion. The best result for the ML models is obtained with the use of ANN (88.71%) and for the DL models is obtained for the GoogleNet architecture (93.75%). The results obtained showed that the number of epochs and the depth of the network have an effect in obtaining the best results.
2023-08-23
Alja'afreh, Mohammad, Obaidat, Muath, Karime, Ali, Alouneh, Sahel.  2022.  Optimizing System-on-Chip Performance Using AI and SDN: Approaches and Challenges. 2022 Ninth International Conference on Software Defined Systems (SDS). :1—8.
The advancement of modern multimedia and data-intensive classes of applications demands the development of hardware that delivers better performance. Due to the evolution of 5G, Edge-Computing, the Internet of Things, Software-Defined networks, etc., the data produced by the devices such as sensors are increasing. A software-Defined network is a powerful paradigm that is capable of automating networking and cloud computing. Software-Defined Network has controllers, devices, and applications which produce a huge amount of data. The processing of data inside the device as well as between the devices needs a better hardware architecture with more cores to ensure speedy performance. The System-on-Chip approach alone will not be capable to handle this dense core comprised of hardware. We have to blend Network-on-Chip along with System-on-Chip to increase the potential to include more cores capable to handle more threads. Artificial Intelligence, a key enabler in next-generation devices is capable of producing a better architecture design with optimized performance. In this paper, we are discussing and endeavouring how System-on-Chip, Network-on-Chip, Software-Defined Networks, and Artificial Intelligence can be physically, logically, and contextually incorporated to deliver improved computation and networking outcomes.
2023-05-12
Verma, Kunaal, Girdhar, Mansi, Hafeez, Azeem, Awad, Selim S..  2022.  ECU Identification using Neural Network Classification and Hyperparameter Tuning. 2022 IEEE International Workshop on Information Forensics and Security (WIFS). :1–6.
Intrusion detection for Controller Area Network (CAN) protocol requires modern methods in order to compete with other electrical architectures. Fingerprint Intrusion Detection Systems (IDS) provide a promising new approach to solve this problem. By characterizing network traffic from known ECUs, hazardous messages can be discriminated. In this article, a modified version of Fingerprint IDS is employed utilizing both step response and spectral characterization of network traffic via neural network training. With the addition of feature set reduction and hyperparameter tuning, this method accomplishes a 99.4% detection rate of trusted ECU traffic.
ISSN: 2157-4774
2023-04-28
Ghazal, Taher M., Hasan, Mohammad Kamrul, Zitar, Raed Abu, Al-Dmour, Nidal A., Al-Sit, Waleed T., Islam, Shayla.  2022.  Cybers Security Analysis and Measurement Tools Using Machine Learning Approach. 2022 1st International Conference on AI in Cybersecurity (ICAIC). :1–4.
Artificial intelligence (AI) and machine learning (ML) have been used in transforming our environment and the way people think, behave, and make decisions during the last few decades [1]. In the last two decades everyone connected to the Internet either an enterprise or individuals has become concerned about the security of his/their computational resources. Cybersecurity is responsible for protecting hardware and software resources from cyber attacks e.g. viruses, malware, intrusion, eavesdropping. Cyber attacks either come from black hackers or cyber warfare units. Artificial intelligence (AI) and machine learning (ML) have played an important role in developing efficient cyber security tools. This paper presents Latest Cyber Security Tools Based on Machine Learning which are: Windows defender ATP, DarckTrace, Cisco Network Analytic, IBM QRader, StringSifter, Sophos intercept X, SIME, NPL, and Symantec Targeted Attack Analytic.
2023-03-03
H, Faheem Nikhat., Sait, Saad Yunus.  2022.  Survey on Touch Behaviour in Smart Device for User Detection. 2022 International Conference on Computer Communication and Informatics (ICCCI). :1–8.
Smart Phones being a revolution in this Modern era which is considered a boon as well as a curse, it is a known fact that most kids of the current generation are addictive to smartphones. The National Institute of Health (NIH) has carried out different studies such as exposure of smartphones to children under 12 years old, health risk associated with their usage, social implications, etc. One such study reveals that children who spend more than two hours a day, on smartphones have been seen performing poorly when it comes to language and cognitive skills. In addition, children who spend more than seven hours per day were diagnosed to have a thinner brain cortex. Hence, it is of great importance to control the amount of exposure of children to smartphones, as well as access to irregulated content. Significant research work has gone in this regard with a plethora of inputs features, feature extraction techniques, and machine learning models. This paper is a survey of the State-of-the-art techniques in detecting the age of the user using machine learning models on touch, keystroke dynamics, and sensor data.
ISSN: 2329-7190
2022-06-09
Ali, Jokha.  2021.  Intrusion Detection Systems Trends to Counteract Growing Cyber-Attacks on Cyber-Physical Systems. 2021 22nd International Arab Conference on Information Technology (ACIT). :1–6.
Cyber-Physical Systems (CPS) suffer from extendable vulnerabilities due to the convergence of the physical world with the cyber world, which makes it victim to a number of sophisticated cyber-attacks. The motives behind such attacks range from criminal enterprises to military, economic, espionage, political, and terrorism-related activities. Many governments are more concerned than ever with securing their critical infrastructure. One of the effective means of detecting threats and securing their infrastructure is the use of Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS). A number of studies have been conducted and proposed to assess the efficacy and effectiveness of IDS through the use of self-learning techniques, especially in the Industrial Control Systems (ICS) era. This paper investigates and analyzes the utilization of IDS systems and their proposed solutions used to enhance the effectiveness of such systems for CPS. The targeted data extraction was from 2011 to 2021 from five selected sources: IEEE, ACM, Springer, Wiley, and ScienceDirect. After applying the inclusion and exclusion criteria, 20 primary studies were selected from a total of 51 studies in the field of threat detection in CPS, ICS, SCADA systems, and the IoT. The outcome revealed the trends in recent research in this area and identified essential techniques to improve detection performance, accuracy, reliability, and robustness. In addition, this study also identified the most vulnerable target layer for cyber-attacks in CPS. Various challenges, opportunities, and solutions were identified. The findings can help scholars in the field learn about how machine learning (ML) methods are used in intrusion detection systems. As a future direction, more research should explore the benefits of ML to safeguard cyber-physical systems.
2022-06-07
Varsha Suresh, P., Lalitha Madhavu, Minu.  2021.  Insider Attack: Internal Cyber Attack Detection Using Machine Learning. 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT). :1–7.
A Cyber Attack is a sudden attempt launched by cybercriminals against multiple computers or networks. According to evolution of cyber space, insider attack is the most serious attack faced by end users, all over the world. Cyber Security reports shows that both US federal Agency as well as different organizations faces insider threat. Machine learning (ML) provide an important technology to secure data from insider threats. Random Forest is the best algorithm that focus on user's action, services and ability for insider attack detection based on data granularity. Substantial raise in the count of decision tree, increases the time consumption and complexity of Random Forest. A novel algorithm Known as Random Forest With Randomized Weighted Fuzzy Feature Set (RF-RWFF) is developed. Fuzzy Membership Function is used for feature aggregation and Randomized Weighted Majority Algorithm (RWMA) is used in the prediction part of Random Forest (RF) algorithm to perform voting. RWMA transform conventional Random Forest, to a perceptron like algorithm and increases the miliage. The experimental results obtained illustrate that the proposed model exhibits an overall improvement in accuracy and recall rate with very much decrease in time complexity compared to conventional Random Forest algorithm. This algorithm can be used in organization and government sector to detect insider fastly and accurately.
2021-09-07
Manikumar, D.V.V.S., Maheswari, B Uma.  2020.  Blockchain Based DDoS Mitigation Using Machine Learning Techniques. 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA). :794–800.
DDoS attacks are the most commonly performed cyber-attacks with a motive to suspend the target services and making them unavailable to users. A recent attack on Github, explains that the traffic was traced back to ``over a thousand different autonomous systems across millions of unique endpoints''. Generally, there are various types of DDoS attacks and each attack uses a different protocol and attacker uses a botnet to execute such attacks. Hence, it will be very difficult for organizations to deal with these attacks and going for third parties to secure themselves from DDoS attacks. In order to eliminate the third parties. Our proposed system uses machine learning algorithms to identify the incoming packet is malicious or not and use Blockchain technology to store the Blacklist. The key benefit of Blockchain is that blacklisted IP addresses are effectively stored, and usage of such infrastructure provides an advantage of extra security mechanism over existing DDoS mitigation systems. This paper has evaluated three different algorithms, such as the KNN Classifier, the Decision Tree Classifier, Random Forest algorithm to find out the better classifying algorithm. Tree Based Classifier technique used for Feature Selection to boost the computational time. Out of the three algorithms, Random Forest provides an accuracy about 95 % in real-time traffic analysis.
2021-06-01
Ghouse, Mohammed, Nene, Manisha J..  2020.  Graph Neural Networks for Prevention of Leakage of Secret Data. 2020 5th International Conference on Communication and Electronics Systems (ICCES). :994—999.
The study presents the design and development of security solution pertaining to prevention of leakage of secret data that is in transit (DIT) to be deployed in a Network Gateway, the Gateway is the link connecting the Trusted Network with the Un-trusted Network. The entire solution includes, tasks such as classification of data flowing in the network, followed by the confinement of the identified data, the confinement of the identified data is done either by tagging the data or by means of encryption, however the later form is employed to achieve confinement of classified data under secret category thereby achieving confidentiality of the same. GNN is used for achieving the categorization function and the results are found to be satisfying with less processing time. The dataset that is used is the publicly available dataset and is available in its labeled format. The final deployment will however be based on the datasets that is available to meet a particular requirement of an Organization/Institution. Any organization can prepare a customized dataset suiting its requirements and train the model. The model can then be used for meeting the DLP requirement.
2020-10-30
Zhang, Jiliang, Qu, Gang.  2020.  Physical Unclonable Function-Based Key Sharing via Machine Learning for IoT Security. IEEE Transactions on Industrial Electronics. 67:7025—7033.

In many industry Internet of Things applications, resources like CPU, memory, and battery power are limited and cannot afford the classic cryptographic security solutions. Silicon physical unclonable function (PUF) is a lightweight security primitive that exploits manufacturing variations during the chip fabrication process for key generation and/or device authentication. However, traditional weak PUFs such as ring oscillator (RO) PUF generate chip-unique key for each device, which restricts their application in security protocols where the same key is required to be shared in resource-constrained devices. In this article, in order to address this issue, we propose a PUF-based key sharing method for the first time. The basic idea is to implement one-to-one input-output mapping with lookup table (LUT)-based interstage crossing structures in each level of inverters of RO PUF. Individual customization on configuration bits of interstage crossing structure and different RO selections with challenges bring high flexibility. Therefore, with the flexible configuration of interstage crossing structures and challenges, crossover RO PUF can generate the same shared key for resource-constrained devices, which enables a new application for lightweight key sharing protocols.

2020-09-18
Zolanvari, Maede, Teixeira, Marcio A., Gupta, Lav, Khan, Khaled M., Jain, Raj.  2019.  Machine Learning-Based Network Vulnerability Analysis of Industrial Internet of Things. IEEE Internet of Things Journal. 6:6822—6834.
It is critical to secure the Industrial Internet of Things (IIoT) devices because of potentially devastating consequences in case of an attack. Machine learning (ML) and big data analytics are the two powerful leverages for analyzing and securing the Internet of Things (IoT) technology. By extension, these techniques can help improve the security of the IIoT systems as well. In this paper, we first present common IIoT protocols and their associated vulnerabilities. Then, we run a cyber-vulnerability assessment and discuss the utilization of ML in countering these susceptibilities. Following that, a literature review of the available intrusion detection solutions using ML models is presented. Finally, we discuss our case study, which includes details of a real-world testbed that we have built to conduct cyber-attacks and to design an intrusion detection system (IDS). We deploy backdoor, command injection, and Structured Query Language (SQL) injection attacks against the system and demonstrate how a ML-based anomaly detection system can perform well in detecting these attacks. We have evaluated the performance through representative metrics to have a fair point of view on the effectiveness of the methods.
2020-06-29
Wehbi, Khadijeh, Hong, Liang, Al-salah, Tulha, Bhutta, Adeel A.  2019.  A Survey on Machine Learning Based Detection on DDoS Attacks for IoT Systems. 2019 SoutheastCon. :1–6.
Internet of Things (IoT) is transforming the way we live today, improving the quality of living standard and growing the world economy by having smart devices around us making decisions and performing our daily tasks and chores. However, securing the IoT system from malicious attacks is a very challenging task. Some of the most common malicious attacks are Denial of service (DoS), and Distributed Denial of service (DDoS) attacks, which have been causing major security threats to all networks and specifically to limited resource IoT devices. As security will always be a primary factor for enabling most IoT applications, developing a comprehensive detection method that effectively defends against DDoS attacks and can provide 100% detection for DDoS attacks in IoT is a primary goal for the future of IoT. The development of such a method requires a deep understanding of the methods that have been used thus far in the detection of DDoS attacks in the IoT environment. In our survey, we try to emphasize some of the most recent Machine Learning (ML) approaches developed for the detection of DDoS attacks in IoT networks along with their advantage and disadvantages. Comparison between the performances of selected approaches is also provided.
2020-06-26
Nath, Anubhav, Biswas, Reetam Sen, Pal, Anamitra.  2019.  Application of Machine Learning for Online Dynamic Security Assessment in Presence of System Variability and Additive Instrumentation Errors. 2019 North American Power Symposium (NAPS). :1—6.
Large-scale blackouts that have occurred in the past few decades have necessitated the need to do extensive research in the field of grid security assessment. With the aid of synchrophasor technology, which uses phasor measurement unit (PMU) data, dynamic security assessment (DSA) can be performed online. However, existing applications of DSA are challenged by variability in system conditions and unaccounted for measurement errors. To overcome these challenges, this research develops a DSA scheme to provide security prediction in real-time for load profiles of different seasons in presence of realistic errors in the PMU measurements. The major contributions of this paper are: (1) develop a DSA scheme based on PMU data, (2) consider seasonal load profiles, (3) account for varying penetrations of renewable generation, and (4) compare the accuracy of different machine learning (ML) algorithms for DSA with and without erroneous measurements. The performance of this approach is tested on the IEEE-118 bus system. Comparative analysis of the accuracies of the ML algorithms under different operating scenarios highlights the importance of considering realistic errors and variability in system conditions while creating a DSA scheme.
2020-05-08
Hafeez, Azeem, Topolovec, Kenneth, Awad, Selim.  2019.  ECU Fingerprinting through Parametric Signal Modeling and Artificial Neural Networks for In-vehicle Security against Spoofing Attacks. 2019 15th International Computer Engineering Conference (ICENCO). :29—38.
Fully connected autonomous vehicles are more vulnerable than ever to hacking and data theft. The controller area network (CAN) protocol is used for communication between in-vehicle control networks (IVN). The absence of basic security features of this protocol, like message authentication, makes it quite vulnerable to a wide range of attacks including spoofing attacks. As traditional cybersecurity methods impose limitations in ensuring confidentiality and integrity of transmitted messages via CAN, a new technique has emerged among others to approve its reliability in fully authenticating the CAN messages. At the physical layer of the communication system, the method of fingerprinting the messages is implemented to link the received signal to the transmitting electronic control unit (ECU). This paper introduces a new method to implement the security of modern electric vehicles. The lumped element model is used to characterize the channel-specific step response. ECU and channel imperfections lead to a unique transfer function for each transmitter. Due to the unique transfer function, the step response for each transmitter is unique. In this paper, we use control system parameters as a feature-set, afterward, a neural network is used transmitting node identification for message authentication. A dataset collected from a CAN network with eight-channel lengths and eight ECUs to evaluate the performance of the suggested method. Detection results show that the proposed method achieves an accuracy of 97.4% of transmitter detection.