Lian, Mengyun, Wang, Jian, Lu, Jinzhi.
2018.
A New Hardware Logic Circuit for Evaluating Multi-Processor Chip Security. 2018 Eighth International Conference on Instrumentation Measurement, Computer, Communication and Control (IMCCC). :1571—1574.
NoC (Network-on-Chip) is widely considered and researched by academic communities as a new inter-core interconnection method that replaces the bus. Nowadays, the complexity of on-chip systems is increasing, requiring better communication performance and scalability. Therefore, the optimization of communication performance has become one of the research hotspots. While the NoC is rapidly developing, it is threatened by hardware Trojans inserted during the design or manufacturing processes. This leads to that the attackers can exploit NoC's vulnerability to attack the on-chip systems. To solve the problem, we design and implement a replay-type hardware Trojan inserted into the NoC, aiming to provide a benchmark test set to promote the defense strategies for NoC hardware security. The experiment proves that the power consumption of the designed Trojan accounts for less than one thousandth of the entire NoC power consumption and area. Besides, simulation experiments reveal that this replaytype hardware Trojan can reduce the network throughput.
Lebiednik, Brian, Abadal, Sergi, Kwon, Hyoukjun, Krishna, Tushar.
2018.
Architecting a Secure Wireless Network-on-Chip. 2018 Twelfth IEEE/ACM International Symposium on Networks-on-Chip (NOCS). :1—8.
With increasing integration in SoCs, the Network-on-Chip (NoC) connecting cores and accelerators is of paramount importance to provide low-latency and high-throughput communication. Due to limits to scaling of electrical wires in terms of energy and delay, especially for long multi-mm distances on-chip, alternate technologies such as Wireless Network-on-Chip (WNoC) have shown promise. WNoCs can provide low-latency one-hop broadcasts across the entire chip and can augment point-to-point multi-hop signaling over traditional wired NoCs. Thus, there has been a recent surge in research demonstrating the performance and energy benefits of WNoCs. However, little to no work has studied the additional security and fault tolerance challenges that are unique to WNoCs. In this work, we study potential threats related to denial-of-service, spoofing, and eavesdropping attacks in WNoCs, due to malicious hardware trojans or faulty wireless components. We introduce Prometheus, a dropin solution inside the network interface that provides protection from all three attacks, while adhering to the strict area, power and latency constraints of on-chip systems.