Meng, Qinglan, Pang, Xiyu, Zheng, Yanli, Jiang, Gangwu, Tian, Xin.
2021.
Development and Optimization of Software Defined Networking Anomaly Detection Architecture by GRU-CNN under Deep Learning. 2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP). :828–834.
Ensuring the network security, resists the malicious traffic attacks as much as possible, and ensuring the network security, the Gated Recurrent Unit (GRU) and Convolutional Neural Network (CNN) are combined. Then, a Software Defined Networking (SDN) anomaly detection architecture is built and continuously optimized to ensure network security as much as possible and enhance the reliability of the detection architecture. The results show that the proposed network architecture can greatly improve the accuracy of detection, and its performance will be different due to the different number of CNN layers. When the two-layer CNN structure is selected, its performance is the best among all algorithms. Especially, the accuracy of GRU- CNN-2 is 98.7%, which verifies that the proposed method is effective. Therefore, under deep learning, the utilization of GRU- CNN to explore and optimize the SDN anomaly detection is of great significance to ensure information transmission security in the future.
Man, Jiaxi, Li, Wei, Wang, Hong, Ma, Weidong.
2021.
On the Technology of Frequency Hopping Communication Network-Station Selection. 2021 International Conference on Electronics, Circuits and Information Engineering (ECIE). :35–41.
In electronic warfare, communication may not counter reconnaissance and jamming without the help of network-station selection of frequency hopping. The competition in the field of electromagnetic spectrum is becoming more and more fierce with the increasingly complex electromagnetic environment of modern battlefield. The research on detection, identification, parameter estimation and network station selection of frequency hopping communication network has aroused the interest of scholars both at home and abroad, which has been summarized in this paper. Firstly, the working mode and characteristics of two kinds of FH communication networking modes synchronous orthogonal network and asynchronous non orthogonal network are introduced. Then, through the analysis of FH signals time hopping, frequency hopping, bandwidth, frequency, direction of arrival, bad time-frequency analysis, clustering analysis and machine learning method, the feature-based method is adopted Parameter selection technology is used to sort FH network stations. Finally, the key and difficult points of current research on FH communication network separation technology and the research status of blind source separation technology are introduced in details in this paper.