Biblio
In the communication model of wired and wireless Adhoc networks, the most needed requirement is the integration of security. Mobile Adhoc networks are more aroused with the attacks compared to the wired environment. Subsequently, the characteristics of Mobile Adhoc networks are also influenced by the vulnerability. The pre-existing unfolding solutions are been obtained for infrastructure-less networks. However, these solutions are not always necessarily suitable for wireless networks. Further, the framework of wireless Adhoc networks has uncommon vulnerabilities and due to this behavior it is not protected by the same solutions, therefore the detection mechanism of intrusion is combinedly used to protect the Manets. Several intrusion detection techniques that have been developed for a fixed wired network cannot be applied in this new environment. Furthermore, The issue of intensity in terms of energy is of a major kind due to which the life of the working battery is very limited. The objective this research work is to detect the Anomalous behavior of nodes in Manet's and Experimental analysis is done by making use of Network Simulator-2 to do the comparative analysis for the existing algorithm, we enhanced the previous algorithm in order to improve the Energy efficiency and results shown the improvement of energy of battery life and Throughput is checked with respect to simulation of test case analysis. In this paper, the proposed algorithm is compared with the existing approach.
Security awareness and energy efficiency are two crucial optimization issues present in MANET where the network topology gets adequately changed and is not predictable which affects the lifetime of the MANET. They are extensively analyzed to improvise the lifetime of the MANET. This paper concentrates on the design of an energy-efficient security-aware fuzzy-based clustering (SFLC) technique to make the network secure and energy-efficient. The selection of cluster heads (CHD) process using fuzzy logic (FL) involves the trust factor as an important input variable. Once the CHDs are elected successfully, clusters will be constructed and start to communication with one another as well as the base station (BS). The presented SFLC model is simulated using NS2 and the performance is validated in terms of energy, lifetime and computation time.