Visible to the public Biblio

Filters: Keyword is vehicular social networks  [Clear All Filters]
2021-04-27
Chen, B., Wu, L., Wang, H., Zhou, L., He, D..  2020.  A Blockchain-Based Searchable Public-Key Encryption With Forward and Backward Privacy for Cloud-Assisted Vehicular Social Networks. IEEE Transactions on Vehicular Technology. 69:5813–5825.
As the integration of the Internet of Vehicles and social networks, vehicular social networks (VSN) not only improves the efficiency and reliability of vehicular communication environment, but also provide more comprehensive social services for users. However, with the emergence of advanced communication and computing technologies, more and more data can be fast and conveniently collected from heterogeneous devices, and VSN has to meet new security challenges such as data security and privacy protection. Searchable encryption (SE) as a promising cryptographic primitive is devoted to data confidentiality without sacrificing data searchability. However, most existing schemes are vulnerable to the adaptive leakage-exploiting attacks or can not meet the efficiency requirements of practical applications, especially the searchable public-key encryption schemes (SPE). To achieve secure and efficient keyword search in VSN, we design a new blockchain-based searchable public-key encryption scheme with forward and backward privacy (BSPEFB). BSPEFB is a decentralized searchable public-key encryption scheme since the central search cloud server is replaced by the smart contract. Meanwhile, BSPEFB supports forward and backward privacy to achieve privacy protection. Finally, we implement a prototype of our basic construction and demonstrate the practicability of the proposed scheme in applications.
2020-05-26
Ostrovskaya, Svetlana, Surnin, Oleg, Hussain, Rasheed, Bouk, Safdar Hussain, Lee, JooYoung, Mehran, Narges, Ahmed, Syed Hassan, Benslimane, Abderrahim.  2018.  Towards Multi-metric Cache Replacement Policies in Vehicular Named Data Networks. 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). :1–7.
Vehicular Named Data Network (VNDN) uses NDN as an underlying communication paradigm to realize intelligent transportation system applications. Content communication is the essence of NDN, which is primarily carried out through content naming, forwarding, intrinsic content security, and most importantly the in-network caching. In vehicular networks, vehicles on the road communicate with other vehicles and/or infrastructure network elements to provide passengers a reliable, efficient, and infotainment-rich commute experience. Recently, different aspects of NDN have been investigated in vehicular networks and in vehicular social networks (VSN); however, in this paper, we investigate the in-network caching, realized in NDN through the content store (CS) data structure. As the stale contents in CS do not just occupy cache space, but also decrease the overall performance of NDN-driven VANET and VSN applications, therefore the size of CS and the content lifetime in CS are primary issues in VNDN communications. To solve these issues, we propose a simple yet efficient multi-metric CS management mechanism through cache replacement (M2CRP). We consider the content popularity, relevance, freshness, and distance of a node to devise a set of algorithms for selection of the content to be replaced in CS in the case of replacement requirement. Simulation results show that our multi-metric strategy outperforms the existing cache replacement mechanisms in terms of Hit Ratio.