Biblio
Load balancing and IP anycast are traffic routing algorithms used to speed up delivery of the Domain Name System. In case of a DDoS attack or an overload condition, the value of these protocols is critical, as they can provide intrinsic DDoS mitigation with the failover alternatives. In this paper, we present a methodology for predicting the next DNS response in the light of a potential redirection to less busy servers, in order to mitigate the size of the attack. Our experiments were conducted using data from the Nov. 2015 attack of the Root DNS servers and Logistic Regression, k-Nearest Neighbors, Support Vector Machines and Random Forest as our primary classifiers. The models were able to successfully predict up to 83% of responses for Root Letters that operated on a small number of sites and consequently suffered the most during the attacks. On the other hand, regarding DNS requests coming from more distributed Root servers, the models demonstrated lower accuracy. Our analysis showed a correlation between the True Positive Rate metric and the number of sites, as well as a clear need for intelligent management of traffic in load balancing practices.
With the evolution of computing from using personal computers to use of online Internet of Things (IoT) services and applications, security risks have also evolved as a major concern. The use of Fog computing enhances reliability and availability of the online services due to enhanced heterogeneity and increased number of computing servers. However, security remains an open challenge. Various trust models have been proposed to measure the security strength of available service providers. We utilize the quantized security of Datacenters and propose a new security-based service broker policy(SbSBP) for Fog computing environment to allocate the optimal Datacenter(s) to serve users' requests based on users' requirements of cost, time and security. Further, considering the dynamic nature of Fog computing, the concept of dynamic reconfiguration has been added. Comparative analysis of simulation results shows the effectiveness of proposed policy to incorporate users' requirements in the decision-making process.
The increased number of cyber attacks makes the availability of services a major security concern. One common type of cyber threat is distributed denial of service (DDoS). A DDoS attack is aimed at disrupting the legitimate users from accessing the services. It is easier for an insider having legitimate access to the system to deceive any security controls resulting in insider attack. This paper proposes an Early Detection and Isolation Policy (EDIP)to mitigate insider-assisted DDoS attacks. EDIP detects insider among all legitimate clients present in the system at proxy level and isolate it from innocent clients by migrating it to attack proxy. Further an effective algorithm for detection and isolation of insider is developed with the aim of maximizing attack isolation while minimizing disruption to benign clients. In addition, concept of load balancing is used to prevent proxies from getting overloaded.
Within few years, Cloud computing has emerged as the most promising IT business model. Thanks to its various technical and financial advantages, Cloud computing continues to convince every day new users coming from scientific and industrial sectors. To satisfy the various users' requirements, Cloud providers must maximize the performance of their IT resources to ensure the best service at the lowest cost. The performance optimization efforts in the Cloud can be achieved at different levels and aspects. In the present paper, we propose to introduce a fuzzy logic process in scheduling strategy for public Cloud in order to improve the response time, processing time and total cost. In fact, fuzzy logic has proven his ability to solve the problem of optimization in several fields such as data mining, image processing, networking and much more.
Proxy Mobile IPv6 (PMIPv6) is an IP mobility protocol. In a PMIPv6 domain, local mobility anchor is involved in control as well as data communication. To ease the load on a mobility anchor and avoid single point of failure, the PMIPv6 standard provides the opportunity of having multiple mobility anchors. In this paper, we propose a Software Defined Networking (SDN) based solution to provide load balancing among mobility anchors, in a SDN based PMIPv6 domain. In the proposed solution, a mobility controller performs acts as a central control entity, and performs load monitoring on the mobility anchors. On detecting the load crossing over a threshold for a certain mobility anchor, the controller moves some traffic from highly loaded mobility anchor to relatively less loaded mobility anchor. Analytical model and primitive performance evaluation of the proposed solution is presented in this paper, which demonstrates 5% and 40% improvement in uplink and downlink traffic disruption periods, respectively
With the rapid increasing IPv6 network traffic, some network process systems like DPI and firewall cannot meet the demand of high network bandwidth. Flow table based on hash is one of the bottlenecks. In this paper, we measure the characteristics of IPv6 address and propose an entropy based revision hash algorithm, which can produce a better distribution within acceptable time. Moreover, we use a hierarchical hash strategy to reduce hash table lookup times further more even in extreme cases.
One of the various features expected for a smart power distribution system - a smart grid in the power distribution level - is the possibility of the fully automated operation for certain control actions. Although this is very expected, it requires various logic, sensor and actuator technologies in a system which, historically, has a low level of automation. One of the most analyzed problems for the distribution system is the topology reconfiguration. The reconfiguration has been applied to various objectives: minimization of power losses, voltage regulation, load balancing, to name a few. The solution method in most cases is centralized and its application is not in real-time. From the new perspectives of advanced distribution systems, fast and adaptive response of the control actions are required, specially in the presence of alternative generation sources and electrical vehicles. In this context, the multi-agent system, which embeds the necessary control actions and decision making is proposed for the topology reconfiguration aiming the loss reduction. The concept of multi-agent system for distribution system is proposed and two case studies with 11-Bus and 16-Bus system are presented.
Monitoring is an important issue in cloud environments because it assures that acquired cloud slices attend the user's expectations. However, these environments are multitenant and dynamic, requiring automation techniques to offload cloud administrators. In a previous work, we proposed FlexACMS: a framework to automate monitoring configuration related to cloud slices using multiple monitoring solutions. In this work, we enhanced FlexACMS to allow dynamic and automatic attribution of monitoring configuration tasks to servers without administrator intervention, which was not available in previous version. FlexACMS also considers the monitoring server load when attributing configuration tasks, which allows load balancing between monitoring servers. The evaluation showed that enhancements reduced FlexACMS response time up to 60% in comparison to previous version. The scalability evaluation of enhanced version demonstrated the feasibility of our approach in large scale cloud environments.