Jiang, Hua.
2021.
Application and Research of Intelligent Security System Based on NFC and Cloud Computing Technology. 2021 20th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES). :200–202.
With the rapid development of urbanization, community security and public security have become an important social issue. As conventional patrol methods can not effectively ensure effective supervision, this paper studies the application of NFC (Near Field Communication) technology in intelligent security system, designs and constructs a set of intelligent security system suitable for public security patrol or security patrol combined with current cloud service technology. The system can not only solve the digital problem of patrol supervision in the current public security, but also greatly improve the efficiency of security and improve the service quality of the industry through the application of intelligent technology.
Zhang, Guangxin, Zhao, Liying, Qiao, Dongliang, Shang, Ziwen, Huang, Rui.
2021.
Design of transmission line safety early warning system based on big data variable analysis. 2021 International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS). :90–93.
In order to improve the accuracy and efficiency of transmission line safety early warning, a transmission line safety early warning system based on big data variable analysis is proposed. Firstly, the overall architecture of the system is designed under the B / S architecture. Secondly, in the hardware part of the system, the security data real-time monitoring module, data transmission module and security warning module are designed to meet the functional requirements of the system. Finally, in the system software design part, the big data variable analysis method is used to calculate the hidden danger of transmission line safety, so as to improve the effectiveness of transmission safety early warning. The experimental results show that, compared with the traditional security early warning system, the early warning accuracy and efficiency of the designed system are significantly improved, which can ensure the safe operation of the transmission line.
Ma, Yingjue, Ni, Hui-jun, Li, Yanping.
2021.
Information Security Practice of Intelligent Knowledge Ecological Communities with Cloud Computing. 2021 IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE). :242–245.
With powerful ability to organize, retrieve and share information, cloud computing technology has effectively improved the development of intelligent learning ecological Communities. The study finds development create a security atmosphere with all homomorphic encryption technology, virtualization technology to prevent the leakage and loss of information data. The result provided a helpful guideline to build a security environment for intelligent ecological communities.
Xue, Bi.
2021.
Information Fusion and Intelligent Management of Industrial Internet of Things under the Background of Big Data. 2021 13th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). :68–71.
This paper summarizes the types and contents of enterprise big data information, analyzes the demand and characteristics of enterprise shared data information based on the Internet of things, and analyzes the current situation of enterprise big data fusion at home and abroad. Firstly, using the idea of the Internet of things for reference, the intelligent sensor is used as the key component of data acquisition, and the multi energy data acquisition technology is discussed. Then the data information of entity enterprises is taken as the research object and a low energy consumption transmission method based on data fusion mechanism for industrial ubiquitous Internet of things is proposed. Finally, a network monitoring and data fusion platform for the industrial Internet of things is implemented. The monitoring node networking and platform usability test are also performed. It is proved that the scheme can achieve multi parameter, real-time, high reliable network intelligent management.
Sun, Yue, Dong, Bin, Chen, Wei, Xu, Xiaotian, Si, Guanlin, Jing, Sen.
2021.
Research on Security Evaluation Technology of Intelligent Video Terminal. 2021 2nd International Symposium on Computer Engineering and Intelligent Communications (ISCEIC). :339–342.
The application of intelligent video terminal has spread in all aspects of production and life, such as urban transportation, enterprises, hospitals, banks, and families. In recent years, intelligent video terminals, video recorders and other video monitoring system components are frequently exposed to high risks of security vulnerabilities, which is likely to threaten the privacy of users and data security. Therefore, it is necessary to strengthen the security research and testing of intelligent video terminals, and formulate reinforcement and protection strategies based on the evaluation results, in order to ensure the confidentiality, integrity and availability of data collected and transmitted by intelligent video terminals.
Chen, Lin, Qiu, Huijun, Kuang, Xiaoyun, Xu, Aidong, Yang, Yiwei.
2021.
Intelligent Data Security Threat Discovery Model Based on Grid Data. 2021 6th International Conference on Image, Vision and Computing (ICIVC). :458–463.
With the rapid construction and popularization of smart grid, the security of data in smart grid has become the basis for the safe and stable operation of smart grid. This paper proposes a data security threat discovery model for smart grid. Based on the prediction data analysis method, combined with migration learning technology, it analyzes different data, uses data matching process to classify the losses, and accurately predicts the analysis results, finds the security risks in the data, and prevents the illegal acquisition of data. The reinforcement learning and training process of this method distinguish the effective authentication and illegal access to data.
Kong, Hongshan, Tang, Jun.
2021.
Agent-based security protection model of secret-related carrier intelligent management and control. 2021 IEEE 2nd International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA). 2:301–304.
Secret-related carrier intelligent management and control system uses the Internet of Things and artificial intelligence to solve the transformation of secret-related carrier management and control from manual operation to automatic detection, precise monitoring, and intelligent decision-making, and use technical means to resolve security risks. However, the coexistence of multiple heterogeneous networks will lead to various network security problems in the secret carrier intelligent management and control. Aiming at the actual requirements of the intelligent management and control of secret-related carriers, this paper proposes a system structure including device domain, network domain, platform domain and user domain, and conducts a detailed system security analysis, and introduces intelligent agent technology, and proposes a distributed system. The hierarchical system structure of the secret-related carrier intelligent management and control security protection model has good robustness and portability.
Jia, Xianfeng, Liu, Tianyu, Sun, Chunhui, Wu, Zhi.
2021.
Analysis on the Application of Cryptographic Technology in the Communication Security of Intelligent Networked Vehicles. 2021 6th International Conference on Automation, Control and Robotics Engineering (CACRE). :423–427.
Intelligent networked vehicles are rapidly developing in intelligence and networking. The communication architecture is becoming more complex, external interfaces are richer, and data types are more complex. Different from the information security of the traditional Internet of Things, the scenarios that need to be met for the security of the Internet of Vehicles are more diverse and the security needs to be more stable. Based on the security technology of traditional Internet of Things, password application is the main protection method to ensure the privacy and non-repudiation of data communication. This article mainly elaborates the application of security protection methods using password-related protection technologies in car-side scenarios and summarizes the security protection recommendations of contemporary connected vehicles in combination with the secure communication architecture of the Internet of Vehicles.
Yang, Ruxia, Gao, Xianzhou, Gao, Peng.
2021.
Research on Intelligent Recognition and Tracking Technology of Sensitive Data for Electric Power Big Data. 2021 13th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). :229–234.
Current power sensitive data security protection adopts classification and grading protection. Company classification and grading are mainly in formulating specifications. Data classification and grading processing is carried out manually, which is heavy and time-consuming, while traditional data identification mainly relies on rules for data identification, the level of automation and intelligence is low, and there are many problems in recognition accuracy. Data classification and classification is the basis of data security protection. Sensitive data identification is the key to data classification and classification, and it is also the first step to achieve accurate data security protection. This paper proposes an intelligent identification and tracking technology of sensitive data for electric power big data, which can improve the ability of data classification and classification, help the realization of data classification and classification, and provide support for the accurate implementation of data security capabilities.
Imtiaz, Sayem Mohammad, Sultana, Kazi Zakia, Varde, Aparna S..
2021.
Mining Learner-friendly Security Patterns from Huge Published Histories of Software Applications for an Intelligent Tutoring System in Secure Coding. 2021 IEEE International Conference on Big Data (Big Data). :4869–4876.
Security patterns are proven solutions to recurring problems in software development. The growing importance of secure software development has introduced diverse research efforts on security patterns that mostly focused on classification schemes, evolution and evaluation of the patterns. Despite a huge mature history of research and popularity among researchers, security patterns have not fully penetrated software development practices. Besides, software security education has not been benefited by these patterns though a commonly stated motivation is the dissemination of expert knowledge and experience. This is because the patterns lack a simple embodiment to help students learn about vulnerable code, and to guide new developers on secure coding. In order to address this problem, we propose to conduct intelligent data mining in the context of software engineering to discover learner-friendly software security patterns. Our proposed model entails knowledge discovery from large scale published real-world vulnerability histories in software applications. We harness association rule mining for frequent pattern discovery to mine easily comprehensible and explainable learner-friendly rules, mainly of the type "flaw implies fix" and "attack type implies flaw", so as to enhance training in secure coding which in turn would augment secure software development. We propose to build a learner-friendly intelligent tutoring system (ITS) based on the newly discovered security patterns and rules explored. We present our proposed model based on association rule mining in secure software development with the goal of building this ITS. Our proposed model and prototype experiments are discussed in this paper along with challenges and ongoing work.
Guo, Jiansheng, Qi, Liang, Suo, Jiao.
2021.
Research on Data Classification of Intelligent Connected Vehicles Based on Scenarios. 2021 International Conference on E-Commerce and E-Management (ICECEM). :153–158.
The intelligent connected vehicle industry has entered a period of opportunity, industry data is accumulating rapidly, and the formulation of industry standards to regulate big data management and application is imminent. As the basis of data security, data classification has received unprecedented attention. By combing through the research and development status of data classification in various industries, this article combines industry characteristics and re-examines the framework of industry data classification from the aspects of information security and data assetization, and tries to find the balance point between data security and data value. The intelligent networked automobile industry provides support for big data applications, this article combines the characteristics of the connected vehicle industry, re-examines the data characteristics of the intelligent connected vehicle industry from the 2 aspects as information security and data assetization, and eventually proposes a scene-based hierarchical framework. The framework includes the complete classification process, model, and quantifiable parameters, which provides a solution and theoretical endorsement for the construction of a big data automatic classification system for the intelligent connected vehicle industry and safe data open applications.