Eze, Emmanuel O., Keates, Simeon, Pedram, Kamran, Esfahani, Alireza, Odih, Uchenna.
2022.
A Context-Based Decision-Making Trust Scheme for Malicious Detection in Connected and Autonomous Vehicles. 2022 International Conference on Computing, Electronics & Communications Engineering (iCCECE). :31—36.
The fast-evolving Intelligent Transportation Systems (ITS) are crucial in the 21st century, promising answers to congestion and accidents that bother people worldwide. ITS applications such as Connected and Autonomous Vehicle (CAVs) update and broadcasts road incident event messages, and this requires significant data to be transmitted between vehicles for a decision to be made in real-time. However, broadcasting trusted incident messages such as accident alerts between vehicles pose a challenge for CAVs. Most of the existing-trust solutions are based on the vehicle's direct interaction base reputation and the psychological approaches to evaluate the trustworthiness of the received messages. This paper provides a scheme for improving trust in the received incident alert messages for real-time decision-making to detect malicious alerts between CAVs using direct and indirect interactions. This paper applies artificial intelligence and statistical data classification for decision-making on the received messages. The model is trained based on the US Department of Technology Safety Pilot Deployment Model (SPMD). An Autonomous Decision-making Trust Scheme (ADmTS) that incorporates a machine learning algorithm and a local trust manager for decision-making has been developed. The experiment showed that the trained model could make correct predictions such as 98% and 0.55% standard deviation accuracy in predicting false alerts on the 25% malicious data
Gao, Kai, Cheng, Xiangyu, Huang, Hao, Li, Xunhao, Yuan, Tingyu, Du, Ronghua.
2022.
False Data Injection Attack Detection in a Platoon of CACC in RSU. 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1324—1329.
Intelligent connected vehicle platoon technology can reduce traffic congestion and vehicle fuel. However, attacks on the data transmitted by the platoon are one of the primary challenges encountered by the platoon during its travels. The false data injection (FDI) attack can lead to road congestion and even vehicle collisions, which can impact the platoon. However, the complexity of the cellular - vehicle to everything (C-V2X) environment, the single source of the message and the poor data processing capability of the on board unit (OBU) make the traditional detection methods’ success rate and response time poor. This study proposes a platoon state information fusion method using the communication characteristics of the platoon in C-V2X and proposes a novel platoon intrusion detection model based on this fusion method combined with sequential importance sampling (SIS). The SIS is a measured strategy of Monte Carlo integration sampling. Specifically, the method takes the status information of the platoon members as the predicted value input. It uses the leader vehicle status information as the posterior probability of the observed value to the current moment of the platoon members. The posterior probabilities of the platoon members and the weights of the platoon members at the last moment are used as input to update the weights of the platoon members at the current moment and obtain the desired platoon status information at the present moment. Moreover, it compares the status information of the platoon members with the desired status information to detect attacks on the platoon. Finally, the effectiveness of the method is demonstrated by simulation.
Manjula, P., Baghavathi Priya, S..
2022.
Detection of Falsified Selfish Node with Optimized Trust Computation Model In Chimp -AODV Based WSN. 2022 International Conference on Electronic Systems and Intelligent Computing (ICESIC). :52—57.
In Wireless Sensor Networks (WSNs), energy and security are two critical concerns that must be addressed. Because of the scarcity of energy, several security measures are restricted. For secure data routing in WSN, it becomes vital to identify insider packet drop attacks. The trust mechanism is an effective strategy for detecting this assault. Each node in this system validates the trustworthiness of its neighbors before transmitting packets, ensuring that only trust-worthy nodes get packets. With such a trust-aware scheme, however, there is a risk of false alarm. This work develops an adaptive trust computation model (TCM)which is implemented in our already proposed Chimp Optimization Algorithm-based Energy-Aware Secure Routing Protocol (COA-EASRP) for WSN. The proposed technique computes the optimal path using the hybrid combination of COA-EASRP and AODV as well as TCM is used to indicate false alarms in detecting selfish nodes. Our Proposed approach provides the series of Simulation outputs carried out based on various parameters
Huang, Fanwei, Li, Qiuping, Zhao, Junhui.
2022.
Trust Management Model of VANETs Based on Machine Learning and Active Detection Technology. 2022 IEEE/CIC International Conference on Communications in China (ICCC Workshops). :412—416.
With the continuous development of vehicular ad hoc networks (VANETs), it brings great traffic convenience. How-ever, it is still a difficult problem for malicious vehicles to spread false news. In order to ensure the reliability of the message, an effective trust management model must be established, so that malicious vehicles can be detected and false information can be identified in the vehicle ad hoc network in time. This paper presents a trust management model based on machine learning and active detection technology, which evaluates the trust of vehicles and events to ensure the credibility of communication. Through the active detection mechanism, vehicles can detect the indirect trust of their neighbors, which improves the filtering speed of malicious nodes. Bayesian classifier can judge whether a vehicle is a malicious node by the state information of the vehicle, and can limit the behavior of the malicious vehicle at the first time. The simulation results show that our scheme can obviously restrict malicious vehicles.
Nazih, Ossama, Benamar, Nabil, Lamaazi, Hanane, Chaoui, Habiba.
2022.
Challenges and future directions for security and privacy in vehicular fog computing. 2022 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT). :693—699.
Cooperative Intelligent Transportation System (CITS) has been introduced recently to increase road safety, traffic efficiency, and to enable various infotainment and comfort applications and services. To this end, a bunch technologies have been deployed to maintain and promote ITS. In essence, ITS is composed of vehicles, roadside infrastructure, and the environment that includes pedestrians, and other entities. Recently, several solutions were suggested to handle with the challenges faced by the vehicular networks (VN) using future internet architectures. One of the promising solutions proposed recently is Vehicular Fog computing (VFC), an attractive solution that supports sensitive service requests considering factors such as latency, mobility, localization, and scalability. VFC also provides a virtual platform for real-time big data analytic using servers or vehicles as a fog infrastructure. This paper surveys the general fog computing (FC) concept, the VFC architectures, and the key characteristics of several intelligent computing applications. We mainly focus on trust and security challenges in VFC deployment and real-time BD analytic in vehicular environment. We identify the faced challenges and future research directions in VFC and we highlight the research gap that can be exploited by researchers and vehicular manufactures while designing a new secure VFC architecture.
Huang, Xiaoge, Yin, Hongbo, Wang, Yongsheng, Chen, Qianbin, Zhang, Jie.
2022.
Location-Based Reliable Sharding in Blockchain-Enabled Fog Computing Networks. 2022 14th International Conference on Wireless Communications and Signal Processing (WCSP). :12—16.
With the explosive growth of the internet of things (IoT) devices, there are amount of data requirements and computing tasks. Fog computing network that could provide computing, caching and communication resources closer to IoT devices (ID) is considered as a potential solution to deal with the vast computing tasks. To improve the performance of the fog computing network while ensuring data security, blockchain technology is enabled and a location-based reliable sharding (LRS) algorithm is proposed, which jointly considers the optimal number of shards, the geographical location of fog nodes (FNs), and the number of nodes in each shard. Firstly, the reliable sharding result is based on the reputation values of FNs, which are related to the decision information and historical reputation value of FNs in the consensus process. Moreover, a reputation based PBFT consensus algorithm is adopted to accelerate the consensus process. Furthermore, the normalized entropy is used to estimate the proportion of malicious nodes and optimize the number of shards. Finally, simulation results show the effectiveness of the proposed scheme.
Hamzah, Anwer Sattar, Abdul-Rahaim, Laith Ali.
2022.
Smart Homes Automation System Using Cloud Computing Based Enhancement Security. 2022 5th International Conference on Engineering Technology and its Applications (IICETA). :164—169.
Smart home automation is one of the prominent topics of the current era, which has attracted the attention of researchers for several years due to smart home automation contributes to achieving many capabilities, which have had a real and vital impact on our daily lives, such as comfort, energy conservation, environment, and security. Home security is one of the most important of these capabilities. Many efforts have been made on research and articles that focus on this area due to the increased rate of crime and theft. The present paper aims to build a practically implemented smart home that enhances home control management and monitors all home entrances that are often vulnerable to intrusion by intruders and thieves. The proposed system depends on identifying the person using the face detection and recognition method and Radio Frequency Identification (RFID) as a mechanism to enhance the performance of home security systems. The cloud server analyzes the received member identification to retrieve the permission to enter the home. The system showed effectiveness and speed of response in transmitting live captures of any illegal intrusive activity at the door or windows of the house. With the growth and expansion of the concept of smart homes, the amount of information transmitted, information security weakness, and response time disturbances, to reduce latency, data storage, and maintain information security, by employing Fog computing architecture in smart homes as a broker between the IoT layer and the cloud servers and the user layer.
Singh, Kiran Deep, Singh, Prabhdeep, Tripathi, Vikas, Khullar, Vikas.
2022.
A Novel and Secure Framework to Detect Unauthorized Access to an Optical Fog-Cloud Computing Network. 2022 Seventh International Conference on Parallel, Distributed and Grid Computing (PDGC). :618—622.
Securing optical edge devices across an optical network is a critical challenge for the technological capabilities of fog/cloud computing. Locating and blocking rogue devices from transmitting data frames in an optical network is a significant security problem due to their widespread distribution over the optical fog cloud. A malicious actor might simply compromise such a device and execute assaults that degrade the optical channel’s Quality. In this study, we advocate an innovative framework for the use of an optical network to facilitate cloud and fog computing in a safe environment. This framework is sustainable and able to detect hostile equipment in optical fog and cloud and redirect it to a honeypot, where the assault may be halted and analyzed. To do this, it employs a model based on a two-stage hidden Markov, a fog manager based on an intrusion detection system, and an optical virtual honeypot. An internal assault is mitigated by simulated testing of the suggested system. The findings validate the adaptable and affordable access for cloud computing and optical fog.
Elmoghrapi, Asma N., Bleblo, Ahmed, Younis, Younis A..
2022.
Fog Computing or Cloud Computing: a Study. 2022 International Conference on Engineering & MIS (ICEMIS). :1—6.
Cloud computing is a new term that refers to the service provisioned over the Internet. It is considered one of the foremost prevailing standards within the Data Innovation (IT) industry these days. It offers capable handling and capacity assets as on-demand administrations at diminished fetched, and progressed productivity. It empowers sharing computing physical assets among cloud computing tents and offers on-demand scaling with taken toll effectiveness. Moreover, cloud computing plays an important role in data centers because they house virtually limitless computational and storage capacities that businesses and end-users can access and use via the Internet. In the context of cloud computing, fog computing refers to bringing services to the network’s edge. Fog computing gives cloud-like usefulness, such as information capacity space, systems, and compute handling control, yet with a more noteworthy scope and nearness since fog nodes are found close to d-user edge gadgets, leveraging assets and diminishing inactivity. The concepts of cloud computing and fog computing will be explored in this paper, and their features will be contrasted to determine the differences between them. Over 25 factors have been used to compare them.
Chandra Bose, S.Subash, R, Vinay D, Raju, Yeligeti, Bhavana, N., Sengupta, Anirbit, Singh, Prabhishek.
2022.
A Deep Learning-Based Fog Computing and cloud computing for Orchestration. 2022 2nd International Conference on Innovative Sustainable Computational Technologies (CISCT). :1—5.
Fog computing is defined as a decentralized infrastructure that locations storage and processing aspects at the side of the cloud, the place records sources such as software customers and sensors exist. The Fog Computing is the time period coined via Cisco that refers to extending cloud computing to an area of the enterprise’s network. Thus, it is additionally recognized as Edge Computing or Fogging. It allows the operation of computing, storage, and networking offerings between give up units and computing facts centers. Fog computing is defined as a decentralized infrastructure that locations storage and processing aspects at the side of the cloud, the place records sources such as software customers and sensors exist. The fog computing Intelligence as Artificial Intelligence (AI) is furnished by way of Fog Nodes in cooperation with Clouds. In Fog Nodes several sorts of AI studying can be realized - such as e.g., Machine Learning (ML), Deep Learning (DL). Thanks to the Genius of Fog Nodes, for example, we communicate of Intelligent IoT.
Almutairi, Mishaal M., Apostolopoulou, Dimitra, Halikias, George, Abi Sen, Adnan Ahmed, Yamin, Mohammad.
2022.
Enhancing Privacy and Security in Crowds using Fog Computing. 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom). :57—62.
Thousands of crowded events take place every year. Often, management does not properly implement and manage privacy and security of data of the participants and personnel of the events. Crowds are also prone to significant security issues and become vulnerable to terrorist attacks. The aim of this paper is to propose a privacy and security framework for large, crowded events like the Hajj, Kumbh, Arba'een, and many sporting events and musical concerts. The proposed framework uses the latest technologies including Internet of Things, and Fog computing, especially in the Location based Services environments. The proposed framework can also be adapted for many other scenarios and situations.
Muhammad Nabi, Masooma, Shah, Munam Ali.
2022.
A Fuzzy Approach to Trust Management in Fog Computing. 2022 24th International Multitopic Conference (INMIC). :1—6.
The Internet of Things (IoT) technology has revolutionized the world where anything is smartly connected and is accessible. The IoT makes use of cloud computing for processing and storing huge amounts of data. In some way, the concept of fog computing has emerged between cloud and IoT devices to address the issue of latency. When a fog node exchanges data for completing a particular task, there are many security and privacy risks. For example, offloading data to a rogue fog node might result in an illegal gathering or modification of users' private data. In this paper, we rely on trust to detect and detach bad fog nodes. We use a Mamdani fuzzy method and we consider a hospital scenario with many fog servers. The aim is to identify the malicious fog node. Metrics such as latency and distance are used in evaluating the trustworthiness of each fog server. The main contribution of this study is identifying how fuzzy logic configuration could alter the trust value of fog nodes. The experimental results show that our method detects the bad fog device and establishes its trustworthiness in the given scenario.
Mukherjee, Pratyusa, Kumar Barik, Rabindra.
2022.
Fog-QKD:Towards secure geospatial data sharing mechanism in geospatial fog computing system based on Quantum Key Distribution. 2022 OITS International Conference on Information Technology (OCIT). :485—490.
Geospatial fog computing system offers various benefits as a platform for geospatial computing services closer to the end users, including very low latency, good mobility, precise position awareness, and widespread distribution. In recent years, it has grown quickly. Fog nodes' security is susceptible to a number of assaults, including denial of service and resource abuse, because to their widespread distribution, complex network environments, and restricted resource availability. This paper proposes a Quantum Key Distribution (QKD)-based geospatial quantum fog computing environment that offers a symmetric secret key negotiation protocol that can preserve information-theoretic security. In QKD, after being negotiated between any two fog nodes, the secret keys can be given to several users in various locations to maintain forward secrecy and long-term protection. The new geospatial quantum fog computing environment proposed in this work is able to successfully withstand a variety of fog computing assaults and enhances information security.
Schulze, Jan-Philipp, Sperl, Philip, Böttinger, Konstantin.
2022.
Anomaly Detection by Recombining Gated Unsupervised Experts. 2022 International Joint Conference on Neural Networks (IJCNN). :1—8.
Anomaly detection has been considered under several extents of prior knowledge. Unsupervised methods do not require any labelled data, whereas semi-supervised methods leverage some known anomalies. Inspired by mixture-of-experts models and the analysis of the hidden activations of neural networks, we introduce a novel data-driven anomaly detection method called ARGUE. Our method is not only applicable to unsupervised and semi-supervised environments, but also profits from prior knowledge of self-supervised settings. We designed ARGUE as a combination of dedicated expert networks, which specialise on parts of the input data. For its final decision, ARGUE fuses the distributed knowledge across the expert systems using a gated mixture-of-experts architecture. Our evaluation motivates that prior knowledge about the normal data distribution may be as valuable as known anomalies.
Qasaimeh, Ghazi, Al-Gasaymeh, Anwar, Kaddumi, Thair, Kilani, Qais.
2022.
Expert Systems and Neural Networks and their Impact on the Relevance of Financial Information in the Jordanian Commercial Banks. 2022 International Conference on Business Analytics for Technology and Security (ICBATS). :1—7.
The current study aims to discern the impact of expert systems and neural network on the Jordanian commercial banks. In achieving the objective, the study employed descriptive analytical approach and the population consisted of the 13 Jordanian commercial banks listed at Amman Stock Exchange-ASE. The primary data were obtained by using a questionnaire with 188 samples distributed to a group of accountants, internal auditors, and programmers, who constitute the study sample. The results unveiled that there is an impact of the application of expert systems and neural networks on the relevance of financial information in Jordanian commercial banks. It also revealed that there is a high level of relevance of financial information in Jordanian commercial banks. Accordingly, the study recommended the need for banks to keep pace with the progress and development taking place in connection to the process and environment of expertise systems by providing modern and developed devices to run various programs and expert systems. It also recommended that, Jordanian commercial banks need to rely more on advanced systems to operate neural network technology more efficiently.
Liu, Yu, Zhou, Chenqian.
2022.
Research on Intelligent Accounting System Based on Intelligent Financial Data Sheet Analysis System Considering Complex Data Mining. 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS). :724—728.
Research on intelligent accounting system based on intelligent financial data sheet analysis system considering complex data mining is conducted in the paper. The expert audit system extracts business records from the business database according to the specified audit conditions, and the program automatically calculates the total amount of the amount data items, and then compares it with the standard or normal business, reflecting the necessary information such as differences and also possible audit trails. In order to find intrusion behaviors and traces, data collection is carried out from multiple points in the network system. The collection content includes system logs, network data packets, important files, and the status and the behavior of the user activities. Furthermore, complex data mining model is combined for the systematic analysis on the system performance. The simulation on the collected data is provided to the validate the performance.
Parshyna, Olena, Parshyna, Marharyta, Parshyn, Yurii, Chumak, Tetiana, Yarmolenko, Ljudmila, Shapoval, Andrii.
2022.
Expert Assessment of Information Protection in Complex Energy Systems. 2022 IEEE 4th International Conference on Modern Electrical and Energy System (MEES). :1—6.
The paper considers the important problem of information protection in complex energy systems. The expert assessment of information protection in complex energy systems method has been developed. Based on the conducted research and data processing, a method of forming the analytical basis for decision-making aimed at ensuring the competitiveness of complex information protection systems has been developed.
Telny, Andrey V., Monakhov, Mikhail Yu..
2022.
Possibility of the Intruder Type Determination in Systems of Physical Protection of Objects. 2022 Dynamics of Systems, Mechanisms and Machines (Dynamics). :1—5.
This article proposes a method for determining the intruder type in the systems of physical protection of objects. An intruder trying to enter the territory, buildings or premises of the facility has to overcome typical engineering reinforcement elements of building structures. Elements of building structures are equipped with addressable alarm sensors. The intruder type is proposed to be determined according to its equipment by comparing the time of actually overcoming the building structure elements with the expert estimates. The time to overcome the elements of building structures is estimated by the time between successive responses of the security alarm address sensors. The intruder's awareness of the protection object is proposed to be assessed by tracking the route of its movement on the object using address sensors. Determining the intruder type according to the data of the security alarm systems can be used for the in-process tactics control of the security group actions.
Hoffmann, David, Biffl, Stefan, Meixner, Kristof, Lüder, Arndt.
2022.
Towards Design Patterns for Production Security. 2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA). :1—4.
In Production System Engineering (PSE), domain experts aim at effectively and efficiently analyzing and mitigating information security risks to product and process qualities for manufacturing. However, traditional security standards do not connect security analysis to the value stream of the production system nor to production quality requirements. This paper aims at facilitating security analysis for production quality already in the design phase of PSE. In this paper, we (i) identify the connection between security and production quality, and (ii) introduce the Production Security Network (PSN) to efficiently derive reusable security requirements and design patterns for PSE. We evaluate the PSN with threat scenarios in a feasibility study. The study results indicate that the PSN satisfies the requirements for systematic security analysis. The design patterns provide a good foundation for improving the communication of domain experts by connecting security and quality concerns.
Liao, Mancheng.
2022.
Establishing a Knowledge Base of an Expert System for Criminal Investigation. 2022 3rd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE). :562—566.
In the information era, knowledge is becoming increasingly significant for all industries, especially criminal investigation that deeply relies on intelligence and strategies. Therefore, there is an urgent need for effective management and utilization of criminal investigation knowledge. As an important branch of knowledge engineering, the expert system can simulate the thinking pattern of an expert, proposing strategies and solutions based on the knowledge stored in the knowledge base. A crucial step in building the expert system is to construct the knowledge base, which determines the function and capability of the expert system. This paper establishes a practical knowledge base for criminal investigation, combining the technologies of cloud computing with traditional method of manual entry to acquire and process knowledge. The knowledge base covers data information and expert knowledge with detailed classification of rules and cases, providing answers through comparison and reasoning. The knowledge becomes more accurate and reliable after repeated inspection and verification by human experts.
Wenqi, Huang, Lingyu, Liang, Xin, Wang, Zhengguo, Ren, Shang, Cao, Xiaotao, Jiang.
2022.
An Early Warning Analysis Model of Metering Equipment Based on Federated Hybrid Expert System. 2022 15th International Symposium on Computational Intelligence and Design (ISCID). :217—220.
The smooth operation of metering equipment is inseparable from the monitoring and analysis of equipment alarm events by automated metering systems. With the generation of big data in power metering and the increasing demand for information security of metering systems in the power industry, how to use big data and protect data security at the same time has become a hot research field. In this paper, we propose a hybrid expert model based on federated learning to deal with the problem of alarm information analysis and identification. The hybrid expert system can divide the metering warning problem into multiple sub-problems for processing, which greatly improves the recognition and prediction accuracy. The experimental results show that our model has high accuracy in judging and identifying equipment faults.