Zhang, Qiaosheng, Tan, Vincent Y. F..
2021.
Covert Identification Over Binary-Input Discrete Memoryless Channels. IEEE Transactions on Information Theory. 67:5387–5403.
This paper considers the covert identification problem in which a sender aims to reliably convey an identification (ID) message to a set of receivers via a binary-input discrete memoryless channel (BDMC), and simultaneously to guarantee that the communication is covert with respect to a warden who monitors the communication via another independent BDMC. We prove a square-root law for the covert identification problem. This states that an ID message of size exp(exp($\Theta$($\surd$ n)) can be transmitted over n channel uses. We then characterize the exact pre-constant in the $\Theta$($\cdot$) notation. This constant is referred to as the covert identification capacity. We show that it equals the recently developed covert capacity in the standard covert communication problem, and somewhat surprisingly, the covert identification capacity can be achieved without any shared key between the sender and receivers. The achievability proof relies on a random coding argument with pulse-position modulation (PPM), coupled with a second stage which performs code refinements. The converse proof relies on an expurgation argument as well as results for channel resolvability with stringent input constraints.
Conference Name: IEEE Transactions on Information Theory
Fionov, Andrey, Klevtsov, Alexandr.
2021.
Eliminating Broadband Covert Channels in DSA-Like Signatures. 2021 XVII International Symposium "Problems of Redundancy in Information and Control Systems" (REDUNDANCY). :45–48.
The Digital Signature Algorithm (DSA) is a representative of a family of digital signature algorithms that are known to have a number of subliminal channels for covert data transmission. The capacity of these channels stretches from several bits (narrowband channels) to about 256 or so bits (a broadband channel). There are a couple of methods described in the literature to prevent the usage of the broadband channel with the help of a warden. In the present paper, we discuss some weaknesses of the known methods and suggest a solution that is free of the weaknesses and eliminates the broadband covert channel. Our solution also requires a warden who does not participate in signature generation and is able to check any signed message for the absence of the covert communication.
Shahzad, Khurram, Zhou, Xiangyun.
2021.
Covert Wireless Communications Under Quasi-Static Fading With Channel Uncertainty. IEEE Transactions on Information Forensics and Security. 16:1104–1116.
Covert communications enable a transmitter to send information reliably in the presence of an adversary, who looks to detect whether the transmission took place or not. We consider covert communications over quasi-static block fading channels, where users suffer from channel uncertainty. We investigate the adversary Willie's optimal detection performance in two extreme cases, i.e., the case of perfect channel state information (CSI) and the case of channel distribution information (CDI) only. It is shown that in the large detection error regime, Willie's detection performances of these two cases are essentially indistinguishable, which implies that the quality of CSI does not help Willie in improving his detection performance. This result enables us to study the covert transmission design without the need to factor in the exact amount of channel uncertainty at Willie. We then obtain the optimal and suboptimal closed-form solution to the covert transmission design. Our result reveals fundamental difference in the design between the case of quasi-static fading channel and the previously studied case of non-fading AWGN channel.
Conference Name: IEEE Transactions on Information Forensics and Security
Frolova, Daria, Kogos, Konstsntin, Epishkina, Anna.
2021.
Traffic Normalization for Covert Channel Protecting. 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus). :2330–2333.
Nowadays a huge amount of sensitive information is sending via packet data networks and its security doesn't provided properly. Very often information leakage causes huge damage to organizations. One of the mechanisms to cause information leakage when it transmits through a communication channel is to construct a covert channel. Everywhere used packet networks provide huge opportunities for covert channels creating, which often leads to leakage of critical data. Moreover, covert channels based on packet length modifying can function in a system even if traffic encryption is applied and there are some data transfer schemes that are difficult to detect. The purpose of the paper is to construct and examine a normalization protection tool against covert channels. We analyze full and partial normalization, propose estimation of the residual covert channel capacity in a case of counteracting and determine the best parameters of counteraction tool.
Giechaskiel, Ilias, Tian, Shanquan, Szefer, Jakub.
2021.
Cross-VM Information Leaks in FPGA-Accelerated Cloud Environments. 2021 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :91–101.
The availability of FPGAs in cloud data centers offers rapid, on-demand access to hardware compute resources that users can configure to their own needs. However, the low-level access to the hardware FPGA and associated resources such as PCIe, SSD, or DRAM also opens up threats of malicious attackers uploading designs that are able to infer information about other users or about the cloud infrastructure itself. In particular, this work presents a new, fast PCIe-contention-based channel that is able to transmit data between different FPGA-accelerated virtual machines with bandwidths reaching 2 kbps with 97% accuracy. This paper further demonstrates that the PCIe receiver circuits are able to not just receive covert transmissions, but can also perform fine-grained monitoring of the PCIe bus or detect different types of activities from other users' FPGA-accelerated virtual machines based on their PCIe traffic signatures. Beyond leaking information across different virtual machines, the ability to monitor the PCIe bandwidth over hours or days can be used to estimate the data center utilization and map the behavior of the other users. The paper also introduces further novel threats in FPGA-accelerated instances, including contention due to shared NVMe SSDs as well as thermal monitoring to identify FPGA co-location using the DRAM modules attached to the FPGA boards. This is the first work to demonstrate that it is possible to break the separation of privilege in FPGA-accelerated cloud environments, and highlights that defenses for public clouds using FPGAs need to consider PCIe, SSD, and DRAM resources as part of the attack surface that should be protected.
Hemmati, Mojtaba, Hadavi, Mohammad Ali.
2021.
Using Deep Reinforcement Learning to Evade Web Application Firewalls. 2021 18th International ISC Conference on Information Security and Cryptology (ISCISC). :35–41.
Web application firewalls (WAF) are the last line of defense in protecting web applications from application layer security threats like SQL injection and cross-site scripting. Currently, most evasion techniques from WAFs are still developed manually. In this work, we propose a solution, which automatically scans the WAFs to find payloads through which the WAFs can be bypassed. Our solution finds out rules defects, which can be further used in rule tuning for rule-based WAFs. Also, it can enrich the machine learning-based dataset for retraining. To this purpose, we provide a framework based on reinforcement learning with an environment compatible with OpenAI gym toolset standards, employed for training agents to implement WAF evasion tasks. The framework acts as an adversary and exploits a set of mutation operators to mutate the malicious payload syntactically without affecting the original semantics. We use Q-learning and proximal policy optimization algorithms with the deep neural network. Our solution is successful in evading signature-based and machine learning-based WAFs.
Wai, Fok Kar, Thing, Vrizlynn L. L..
2021.
Clustering Based Opcode Graph Generation for Malware Variant Detection. 2021 18th International Conference on Privacy, Security and Trust (PST). :1–11.
Malwares are the key means leveraged by threat actors in the cyber space for their attacks. There is a large array of commercial solutions in the market and significant scientific research to tackle the challenge of the detection and defense against malwares. At the same time, attackers also advance their capabilities in creating polymorphic and metamorphic malwares to make it increasingly challenging for existing solutions. To tackle this issue, we propose a methodology to perform malware detection and family attribution. The proposed methodology first performs the extraction of opcodes from malwares in each family and constructs their respective opcode graphs. We explore the use of clustering algorithms on the opcode graphs to detect clusters of malwares within the same malware family. Such clusters can be seen as belonging to different sub-family groups. Opcode graph signatures are built from each detected cluster. Hence, for each malware family, a group of signatures is generated to represent the family. These signatures are used to classify an unknown sample as benign or belonging to one the malware families. We evaluate our methodology by performing experiments on a dataset consisting of both benign files and malware samples belonging to a number of different malware families and comparing the results to existing approach.
Sahu, Indra Kumar, Nene, Manisha J.
2021.
Identity-Based Integrity Verification (IBIV) Protocol for Cloud Data Storage. 2021 International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT). :1–6.
With meteoric advancement in quantum computing, the traditional data integrity verifying schemes are no longer safe for cloud data storage. A large number of the current techniques are dependent on expensive Public Key Infrastructure (PKI). They cost computationally and communicationally heavy for verification which do not stand with the advantages when quantum computing techniques are applied. Hence, a quantum safe and efficient integrity verification protocol is a research hotspot. Lattice-based signature constructions involve matrix-matrix or matrix vector multiplications making computation competent, simple and resistant to quantum computer attacks. Study in this paper uses Bloom Filter which offers high efficiency in query and search operations. Further, we propose an Identity-Based Integrity Verification (IBIV) protocol for cloud storage from Lattice and Bloom filter. We focus on security against attacks from Cloud Service Provider (CSP), data privacy attacks against Third Party Auditor (TPA) and improvement in efficiency.
Srinivasan, Sudarshan, Begoli, Edmon, Mahbub, Maria, Knight, Kathryn.
2021.
Nomen Est Omen - The Role of Signatures in Ascribing Email Author Identity with Transformer Neural Networks. 2021 IEEE Security and Privacy Workshops (SPW). :291–297.
Authorship attribution, an NLP problem where anonymous text is matched to its author, has important, cross-disciplinary applications, particularly those concerning cyber-defense. Our research examines the degree of sensitivity that attention-based models have to adversarial perturbations. We ask, what is the minimal amount of change necessary to maximally confuse a transformer model? In our investigation we examine a balanced subset of emails from the Enron email dataset, calculating the performance of our model before and after email signatures have been perturbed. Results show that the model's performance changed significantly in the absence of a signature, indicating the importance of email signatures in email authorship detection. Furthermore, we show that these models rely on signatures for shorter emails much more than for longer emails. We also indicate that additional research is necessary to investigate stylometric features and adversarial training to further improve classification model robustness.
Johnson, Andrew, Haddad, Rami J..
2021.
Evading Signature-Based Antivirus Software Using Custom Reverse Shell Exploit. SoutheastCon 2021. :1–6.
Antivirus software is considered to be the primary line of defense against malicious software in modern computing systems. The purpose of this paper is to expose exploitation that can evade Antivirus software that uses signature-based detection algorithms. In this paper, a novel approach was proposed to change the source code of a common Metasploit-Framework used to compile the reverse shell payload without altering its functionality but changing its signature. The proposed method introduced an additional stage to the shellcode program. Instead of the shellcode being generated and stored within the program, it was generated separately and stored on a remote server and then only accessed when the program is executed. This approach was able to reduce its detectability by the Antivirus software by 97% compared to a typical reverse shell program.
Arfeen, Asad, Ahmed, Saad, Khan, Muhammad Asim, Jafri, Syed Faraz Ali.
2021.
Endpoint Detection Amp; Response: A Malware Identification Solution. 2021 International Conference on Cyber Warfare and Security (ICCWS). :1–8.
Malicious hackers breach security perimeters, cause infrastructure disruptions as well as steal proprietary information, financial data, and violate consumers' privacy. Protection of the whole organization by using the firm's security officers can be besieged with faulty warnings. Engineers must shift from console to console to put together investigative clues as a result of today's fragmented security technologies that cause frustratingly sluggish investigations. Endpoint Detection and Response (EDR) solutions adds an extra layer of protection to prevent an endpoint action into a breach. EDR is the region's foremost detection and response tool that combines endpoint and network data to recognize and respond to sophisticated threats. Offering unrivaled security and operational effectiveness, it integrates prevention, investigation, detection, and responding in a single platform. EDR provides enterprise coverage and uninterrupted defense with its continuous monitoring and response to threats. We have presented a comprehensive review of existing EDRs through various security layers that includes detection, response and management capabilities which enables security teams to have unified end-to-end corporate accessibility, powerful analytics along with additional features such as web threat scan, external device scan and automatic reaction across the whole technological tower.
Chen, Quan, Snyder, Peter, Livshits, Ben, Kapravelos, Alexandros.
2021.
Detecting Filter List Evasion with Event-Loop-Turn Granularity JavaScript Signatures. 2021 IEEE Symposium on Security and Privacy (SP). :1715–1729.
Content blocking is an important part of a per-formant, user-serving, privacy respecting web. Current content blockers work by building trust labels over URLs. While useful, this approach has many well understood shortcomings. Attackers may avoid detection by changing URLs or domains, bundling unwanted code with benign code, or inlining code in pages.The common flaw in existing approaches is that they evaluate code based on its delivery mechanism, not its behavior. In this work we address this problem by building a system for generating signatures of the privacy-and-security relevant behavior of executed JavaScript. Our system uses as the unit of analysis each script's behavior during each turn on the JavaScript event loop. Focusing on event loop turns allows us to build highly identifying signatures for JavaScript code that are robust against code obfuscation, code bundling, URL modification, and other common evasions, as well as handle unique aspects of web applications.This work makes the following contributions to the problem of measuring and improving content blocking on the web: First, we design and implement a novel system to build per-event-loop-turn signatures of JavaScript behavior through deep instrumentation of the Blink and V8 runtimes. Second, we apply these signatures to measure how much privacy-and-security harming code is missed by current content blockers, by using EasyList and EasyPrivacy as ground truth and finding scripts that have the same privacy and security harming patterns. We build 1,995,444 signatures of privacy-and-security relevant behaviors from 11,212 unique scripts blocked by filter lists, and find 3,589 unique scripts hosting known harmful code, but missed by filter lists, affecting 12.48% of websites measured. Third, we provide a taxonomy of ways scripts avoid detection and quantify the occurrence of each. Finally, we present defenses against these evasions, in the form of filter list additions where possible, and through a proposed, signature based system in other cases.As part of this work, we share the implementation of our signature-generation system, the data gathered by applying that system to the Alexa 100K, and 586 AdBlock Plus compatible filter list rules to block instances of currently blocked code being moved to new URLs.
Kara, Mustafa, \c Sanlıöz, \c Sevki Gani, Merzeh, Hisham R. J., Aydın, Muhammed Ali, Balık, Hasan Hüseyin.
2021.
Blockchain Based Mutual Authentication for VoIP Applications with Biometric Signatures. 2021 6th International Conference on Computer Science and Engineering (UBMK). :133–138.
In this study, a novel decentralized authentication model is proposed for establishing a secure communications structure in VoIP applications. The proposed scheme considers a distributed architecture called the blockchain. With this scheme, we highlight the multimedia data is more resistant to some of the potential attacks according to the centralized architecture. Our scheme presents the overall system authentication architecture, and it is suitable for mutual authentication in terms of privacy and anonymity. We construct an ECC-based model in the encryption infrastructure because our structure is time-constrained during communications. This study differs from prior work in that blockchain platforms with ECC-Based Biometric Signature. We generate a biometric key for creating a unique ID value with ECC to verify the caller and device authentication together in blockchain. We validated the proposed model by comparing with the existing method in VoIP application used centralized architecture.
Garn, Bernhard, Sebastian Lang, Daniel, Leithner, Manuel, Richard Kuhn, D., Kacker, Raghu, Simos, Dimitris E..
2021.
Combinatorially XSSing Web Application Firewalls. 2021 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW). :85–94.
Cross-Site scripting (XSS) is a common class of vulnerabilities in the domain of web applications. As it re-mains prevalent despite continued efforts by practitioners and researchers, site operators often seek to protect their assets using web application firewalls (WAFs). These systems employ filtering mechanisms to intercept and reject requests that may be suitable to exploit XSS flaws and related vulnerabilities such as SQL injections. However, they generally do not offer complete protection and can often be bypassed using specifically crafted exploits. In this work, we evaluate the effectiveness of WAFs to detect XSS exploits. We develop an attack grammar and use a combinatorial testing approach to generate attack vectors. We compare our vectors with conventional counterparts and their ability to bypass different WAFs. Our results show that the vectors generated with combinatorial testing perform equal or better in almost all cases. They further confirm that most of the rule sets evaluated in this work can be bypassed by at least one of these crafted inputs.
Perumal, Seethalakshmi, Sujatha P, Kola.
2021.
Stacking Ensemble-based XSS Attack Detection Strategy Using Classification Algorithms. 2021 6th International Conference on Communication and Electronics Systems (ICCES). :897–901.
The accessibility of the internet and mobile platforms has risen dramatically due to digital technology innovations. Web applications have opened up a variety of market possibilities by supplying consumers with a wide variety of digital technologies that benefit from high accessibility and functionality. Around the same time, web application protection continues to be an important challenge on the internet, and security must be taken seriously in order to secure confidential data. The threat is caused by inadequate validation of user input information, software developed without strict adherence to safety standards, vulnerability of reusable software libraries, software weakness, and so on. Through abusing a website's vulnerability, introduers are manipulating the user's information in order to exploit it for their own benefit. Then introduers inject their own malicious code, stealing passwords, manipulating user activities, and infringing on customers' privacy. As a result, information is leaked, applications malfunction, confidential data is accessed, etc. To mitigate the aforementioned issues, stacking ensemble based classifier model for Cross-site scripting (XSS) attack detection is proposed. Furthermore, the stacking ensembles technique is used in combination with different machine learning classification algorithms like k-Means, Random Forest and Decision Tree as base-learners to reliably detect XSS attack. Logistic Regression is used as meta-learner to predict the attack with greater accuracy. The classification algorithms in stacking model explore the problem in their own way and its results are given as input to the meta-learner to make final prediction, thus improving the overall detection accuracy of XSS attack in stacking than the individual models. The simulation findings demonstrate that the proposed model detects XSS attack successfully.
Wang, Pei, Bangert, Julian, Kern, Christoph.
2021.
If It’s Not Secure, It Should Not Compile: Preventing DOM-Based XSS in Large-Scale Web Development with API Hardening. 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). :1360–1372.
With tons of efforts spent on its mitigation, Cross-site scripting (XSS) remains one of the most prevalent security threats on the internet. Decades of exploitation and remediation demonstrated that code inspection and testing alone does not eliminate XSS vulnerabilities in complex web applications with a high degree of confidence. This paper introduces Google's secure-by-design engineering paradigm that effectively prevents DOM-based XSS vulnerabilities in large-scale web development. Our approach, named API hardening, enforces a series of company-wide secure coding practices. We provide a set of secure APIs to replace native DOM APIs that are prone to XSS vulnerabilities. Through a combination of type contracts and appropriate validation and escaping, the secure APIs ensure that applications based thereon are free of XSS vulnerabilities. We deploy a simple yet capable compile-time checker to guarantee that developers exclusively use our hardened APIs to interact with the DOM. We make various of efforts to scale this approach to tens of thousands of engineers without significant productivity impact. By offering rigorous tooling and consultant support, we help developers adopt the secure coding practices as seamlessly as possible. We present empirical results showing how API hardening has helped reduce the occurrences of XSS vulnerabilities in Google's enormous code base over the course of two-year deployment.
Luo, Jing, Xu, Guoqing.
2021.
XSS Attack Detection Methods Based on XLNet and GRU. 2021 4th International Conference on Robotics, Control and Automation Engineering (RCAE). :171–175.
With the progress of science and technology and the development of Internet technology, Internet technology has penetrated into various industries in today’s society. But this explosive growth is also troubling information security. Among them, XSS (cross-site scripting vulnerability) is one of the most influential vulnerabilities in Internet applications in recent years. Traditional network security detection technology is becoming more and more weak in the new network environment, and deep learning methods such as CNN and RNN can only learn the spatial or timing characteristics of data samples in a single way. In this paper, a generalized self-regression pretraining model XLNet and GRU XSS attack detection method is proposed, the self-regression pretrained model XLNet is introduced and combined with GRU to learn the time series and spatial characteristics of the data, and the generalization capability of the model is improved by using dropout. Faced with the increasingly complex and ever-changing XSS payload, this paper refers to the character-level convolution to establish a dictionary to encode the data samples, thus preserving the characteristics of the original data and improving the overall efficiency, and then transforming it into a two-dimensional spatial matrix to meet XLNet’s input requirements. The experimental results on the Github data set show that the accuracy of this method is 99.92 percent, the false positive rate is 0.02 percent, the accuracy rate is 11.09 percent higher than that of the DNN method, the false positive rate is 3.95 percent lower, and other evaluation indicators are better than GRU, CNN and other comparative methods, which can improve the detection accuracy and system stability of the whole detection system. This multi-model fusion method can make full use of the advantages of each model to improve the accuracy of system detection, on the other hand, it can also enhance the stability of the system.
Tanakas, Petros, Ilias, Aristidis, Polemi, Nineta.
2021.
A Novel System for Detecting and Preventing SQL Injection and Cross-Site-Script. 2021 International Conference on Electrical, Computer and Energy Technologies (ICECET). :1–6.
SQL Injection and Cross-Site Scripting are the two most common attacks in database-based web applications. In this paper we propose a system to detect different types of SQL injection and XSS attacks associated with a web application, without the existence of any firewall, while significantly reducing the network overhead. We use properly modifications of the Nginx Reverse Proxy protocols and Suricata NIDS/ IPS rules. Pure work has been done from other researchers based on the capabilities of Nginx and Suricata and our approach with the experimental results provided in the paper demonstrate the efficiency of our system.
Farea, Abdulgbar A. R., Wang, Chengliang, Farea, Ebraheem, Ba Alawi, Abdulfattah.
2021.
Cross-Site Scripting (XSS) and SQL Injection Attacks Multi-classification Using Bidirectional LSTM Recurrent Neural Network. 2021 IEEE International Conference on Progress in Informatics and Computing (PIC). :358–363.
E-commerce, ticket booking, banking, and other web-based applications that deal with sensitive information, such as passwords, payment information, and financial information, are widespread. Some web developers may have different levels of understanding about securing an online application. The two vulnerabilities identified by the Open Web Application Security Project (OWASP) for its 2017 Top Ten List are SQL injection and Cross-site Scripting (XSS). Because of these two vulnerabilities, an attacker can take advantage of these flaws and launch harmful web-based actions. Many published articles concentrated on a binary classification for these attacks. This article developed a new approach for detecting SQL injection and XSS attacks using deep learning. SQL injection and XSS payloads datasets are combined into a single dataset. The word-embedding technique is utilized to convert the word’s text into a vector. Our model used BiLSTM to auto feature extraction, training, and testing the payloads dataset. BiLSTM classified the payloads into three classes: XSS, SQL injection attacks, and normal. The results showed great results in classifying payloads into three classes: XSS attacks, injection attacks, and non-malicious payloads. BiLSTM showed high performance reached 99.26% in terms of accuracy.
N, Joshi Padma, Ravishankar, N., Raju, M.B., Vyuha, N. Ch. Sai.
2021.
Secure Software Immune Receptors from SQL Injection and Cross Site Scripting Attacks in Content Delivery Network Web Applications. 2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :1–5.
In our proposed work the web security has been enhanced using additional security code and an enhanced frame work. Administrator of site is required to specify the security code for particular date and time. On user end user would be capable to login and view authentic code allotted to them during particular time slot. This work would be better in comparison of tradition researches in order to prevent sql injection attack and cross script because proposed work is not just considering the security, it is also focusing on the performance of security system. This system is considering the lot of security dimensions. But in previous system there was focus either on sql injection or cross script. Proposed research is providing versatile security and is available with low time consumption with less probability of unauthentic access.
Zukran, Busra, Siraj, Maheyzah Md.
2021.
Performance Comparison on SQL Injection and XSS Detection using Open Source Vulnerability Scanners. 2021 International Conference on Data Science and Its Applications (ICoDSA). :61–65.
Web technologies are typically built with time constraints and security vulnerabilities. Automatic software vulnerability scanners are common tools for detecting such vulnerabilities among software developers. It helps to illustrate the program for the attacker by creating a great deal of engagement within the program. SQL Injection and Cross-Site Scripting (XSS) are two of the most commonly spread and dangerous vulnerabilities in web apps that cause to the user. It is very important to trust the findings of the site vulnerability scanning software. Without a clear idea of the accuracy and the coverage of the open-source tools, it is difficult to analyze the result from the automatic vulnerability scanner that provides. The important to do a comparison on the key figure on the automated vulnerability scanners because there are many kinds of a scanner on the market and this comparison can be useful to decide which scanner has better performance in term of SQL Injection and Cross-Site Scripting (XSS) vulnerabilities. In this paper, a method by Jose Fonseca et al, is used to compare open-source automated vulnerability scanners based on detection coverage and a method by Yuki Makino and Vitaly Klyuev for precision rate. The criteria vulnerabilities will be injected into the web applications which then be scanned by the scanners. The results then are compared by analyzing the precision rate and detection coverage of vulnerability detection. Two leading open source automated vulnerability scanners will be evaluated. In this paper, the scanner that being utilizes is OW ASP ZAP and Skipfish for comparison. The results show that from precision rate and detection rate scope, OW ASP ZAP has better performance than Skipfish by two times for precision rate and have almost the same result for detection coverage where OW ASP ZAP has a higher number in high vulnerabilities.
Chen, Hsing-Chung, Nshimiyimana, Aristophane, Damarjati, Cahya, Chang, Pi-Hsien.
2021.
Detection and Prevention of Cross-site Scripting Attack with Combined Approaches. 2021 International Conference on Electronics, Information, and Communication (ICEIC). :1–4.
Cross-site scripting (XSS) attack is a kind of code injection that allows an attacker to inject malicious scripts code into a trusted web application. When a user tries to request the injected web page, he is not aware that the malicious script code might be affecting his computer. Nowadays, attackers are targeting the web applications that holding a sensitive data (e.g., bank transaction, e-mails, healthcare, and e-banking) to steal users' information and gain full access to the data which make the web applications to be more vulnerable. In this research, we applied three approaches to find a solution to this most challenging attacks issues. In the first approach, we implemented Random Forest (RF), Logistic Regression (LR), k-Nearest Neighbors (k-NN), and Support Vector Machine (SVM) algorithms to discover and classify XSS attack. In the second approach, we implemented the Content Security Policy (CSP) approach to detect XSS attacks in real-time. In the last approach, we propose a new approach that combines the Web Application Firewall (WAF), Intrusion Detection System (IDS), and Intrusion Prevention System (IPS) to detect and prevent XSS attack in real-time. Our experiment results demonstrated the high performance of AI algorithms. The CSP approach shows the results for the detection system report in real-time. In the third approach, we got more expected system results that make our third model system a more powerful tool to address this research problem than the other two approaches.
Hong, Zicong, Guo, Song, Li, Peng, Chen, Wuhui.
2021.
Pyramid: A Layered Sharding Blockchain System. IEEE INFOCOM 2021 - IEEE Conference on Computer Communications. :1–10.
Sharding can significantly improve the blockchain scalability, by dividing nodes into small groups called shards that can handle transactions in parallel. However, all existing sharding systems adopt complete sharding, i.e., shards are isolated. It raises additional overhead to guarantee the atomicity and consistency of cross-shard transactions and seriously degrades the sharding performance. In this paper, we present Pyramid, the first layered sharding blockchain system, in which some shards can store the full records of multiple shards thus the cross-shard transactions can be processed and validated in these shards internally. When committing cross-shard transactions, to achieve consistency among the related shards, a layered sharding consensus based on the collaboration among several shards is presented. Compared with complete sharding in which each cross-shard transaction is split into multiple sub-transactions and cost multiple consensus rounds to commit, the layered sharding consensus can commit cross-shard transactions in one round. Furthermore, the security, scalability, and performance of layered sharding with different sharding structures are theoretically analyzed. Finally, we implement a prototype for Pyramid and its evaluation results illustrate that compared with the state-of-the-art complete sharding systems, Pyramid can improve the transaction throughput by 2.95 times in a system with 17 shards and 3500 nodes.
Gürcüo\u glu, O\u guz, Erdem, Mehmet Can, Çirkino\u glu, H. Ozan, Ferhanoglu, Onur, Kurt, Güne\c s Karabulut, Panayırcı, Erdal.
2021.
Improved Physical Layer Security in Visible Light Communications by Using Focused Light Emitters. 2021 29th Signal Processing and Communications Applications Conference (SIU). :1–4.
A conventional visible light communication system consists of a transmitter, a jammer that includes a few light emitting diodes, a legal listener and an eavesdropper. In this work, a similar system is designed with a collimating lens in order to create an extra layer of practical physical security measure. The use of a collimating lens makes it available to spatially limiting data transmission to an area under the lensed transmitter. Also focused data transmission through the optical lens, increases the secrecy rate. To investigate the applicability of the proposed design we designed a sample experimental setup using USRP and implemented in a laboratory environment. In the proposed set up, the receiver is in a fixed position. However, it is possible to implement an easy, practical and cheap hardware solution with respect to a beamforming type VLC that uses directional beam forming method to establish transmission to a dynamic target. In addition, it is achievable to control the size of the area where a receiver can access data by manipulating the distance between the optical lens and transmitter.
Gharib, Anastassia, Ibnkahla, Mohamed.
2021.
Security Aware Cluster Head Selection with Coverage and Energy Optimization in WSNs for IoT. ICC 2021 - IEEE International Conference on Communications. :1–6.
Nodes in wireless Internet of Things (IoT) sensor networks are heterogeneous in nature. This heterogeneity can come from energy and security resources available at the node level. Besides, these resources are usually limited. Efficient cluster head (CH) selection in rounds is the key to preserving energy resources of sensor nodes. However, energy and security resources are contradictory to one another. Therefore, it is challenging to ensure CH selection with appropriate security resources without decreasing energy efficiency. Coverage and energy optimization subject to a required security level can form a solution to the aforementioned trade-off. This paper proposes a security level aware CH selection algorithm in wireless sensor networks for IoT. The proposed method considers energy and security level updates for nodes and coverage provided by associated CHs. The proposed method performs CH selection in rounds and in a centralized parallel processing way, making it applicable to the IoT scenario. The proposed algorithm is compared to existing traditional and emerging CH selection algorithms that apply security mechanisms in terms of energy and security efficiencies.