Visible to the public Biblio

Filters: Keyword is ML models  [Clear All Filters]
2021-03-01
Kuppa, A., Le-Khac, N.-A..  2020.  Black Box Attacks on Explainable Artificial Intelligence(XAI) methods in Cyber Security. 2020 International Joint Conference on Neural Networks (IJCNN). :1–8.

Cybersecurity community is slowly leveraging Machine Learning (ML) to combat ever evolving threats. One of the biggest drivers for successful adoption of these models is how well domain experts and users are able to understand and trust their functionality. As these black-box models are being employed to make important predictions, the demand for transparency and explainability is increasing from the stakeholders.Explanations supporting the output of ML models are crucial in cyber security, where experts require far more information from the model than a simple binary output for their analysis. Recent approaches in the literature have focused on three different areas: (a) creating and improving explainability methods which help users better understand the internal workings of ML models and their outputs; (b) attacks on interpreters in white box setting; (c) defining the exact properties and metrics of the explanations generated by models. However, they have not covered, the security properties and threat models relevant to cybersecurity domain, and attacks on explainable models in black box settings.In this paper, we bridge this gap by proposing a taxonomy for Explainable Artificial Intelligence (XAI) methods, covering various security properties and threat models relevant to cyber security domain. We design a novel black box attack for analyzing the consistency, correctness and confidence security properties of gradient based XAI methods. We validate our proposed system on 3 security-relevant data-sets and models, and demonstrate that the method achieves attacker's goal of misleading both the classifier and explanation report and, only explainability method without affecting the classifier output. Our evaluation of the proposed approach shows promising results and can help in designing secure and robust XAI methods.

2020-12-01
Usama, M., Asim, M., Latif, S., Qadir, J., Ala-Al-Fuqaha.  2019.  Generative Adversarial Networks For Launching and Thwarting Adversarial Attacks on Network Intrusion Detection Systems. 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC). :78—83.

Intrusion detection systems (IDSs) are an essential cog of the network security suite that can defend the network from malicious intrusions and anomalous traffic. Many machine learning (ML)-based IDSs have been proposed in the literature for the detection of malicious network traffic. However, recent works have shown that ML models are vulnerable to adversarial perturbations through which an adversary can cause IDSs to malfunction by introducing a small impracticable perturbation in the network traffic. In this paper, we propose an adversarial ML attack using generative adversarial networks (GANs) that can successfully evade an ML-based IDS. We also show that GANs can be used to inoculate the IDS and make it more robust to adversarial perturbations.

2020-09-04
Khan, Aasher, Rehman, Suriya, Khan, Muhammad U.S, Ali, Mazhar.  2019.  Synonym-based Attack to Confuse Machine Learning Classifiers Using Black-box Setting. 2019 4th International Conference on Emerging Trends in Engineering, Sciences and Technology (ICEEST). :1—7.
Twitter being the most popular content sharing platform is giving rise to automated accounts called “bots”. Majority of the users on Twitter are bots. Various machine learning (ML) algorithms are designed to detect bots avoiding the vulnerability constraints of ML-based models. This paper contributes to exploit vulnerabilities of machine learning (ML) algorithms through black-box attack. An adversarial text sequence misclassifies the results of deep learning (DL) classifiers for bot detection. Literature shows that ML models are vulnerable to attacks. The aim of this paper is to compromise the accuracy of ML-based bot detection algorithms by replacing original words in tweets with their synonyms. Our results show 7.2% decrease in the accuracy for bot tweets, therefore classifying bot tweets as legitimate tweets.
2020-08-03
Juuti, Mika, Szyller, Sebastian, Marchal, Samuel, Asokan, N..  2019.  PRADA: Protecting Against DNN Model Stealing Attacks. 2019 IEEE European Symposium on Security and Privacy (EuroS P). :512–527.
Machine learning (ML) applications are increasingly prevalent. Protecting the confidentiality of ML models becomes paramount for two reasons: (a) a model can be a business advantage to its owner, and (b) an adversary may use a stolen model to find transferable adversarial examples that can evade classification by the original model. Access to the model can be restricted to be only via well-defined prediction APIs. Nevertheless, prediction APIs still provide enough information to allow an adversary to mount model extraction attacks by sending repeated queries via the prediction API. In this paper, we describe new model extraction attacks using novel approaches for generating synthetic queries, and optimizing training hyperparameters. Our attacks outperform state-of-the-art model extraction in terms of transferability of both targeted and non-targeted adversarial examples (up to +29-44 percentage points, pp), and prediction accuracy (up to +46 pp) on two datasets. We provide take-aways on how to perform effective model extraction attacks. We then propose PRADA, the first step towards generic and effective detection of DNN model extraction attacks. It analyzes the distribution of consecutive API queries and raises an alarm when this distribution deviates from benign behavior. We show that PRADA can detect all prior model extraction attacks with no false positives.
2020-07-03
Usama, Muhammad, Asim, Muhammad, Qadir, Junaid, Al-Fuqaha, Ala, Imran, Muhammad Ali.  2019.  Adversarial Machine Learning Attack on Modulation Classification. 2019 UK/ China Emerging Technologies (UCET). :1—4.

Modulation classification is an important component of cognitive self-driving networks. Recently many ML-based modulation classification methods have been proposed. We have evaluated the robustness of 9 ML-based modulation classifiers against the powerful Carlini & Wagner (C-W) attack and showed that the current ML-based modulation classifiers do not provide any deterrence against adversarial ML examples. To the best of our knowledge, we are the first to report the results of the application of the C-W attack for creating adversarial examples against various ML models for modulation classification.