Visible to the public Biblio

Filters: Keyword is Weibull distribution  [Clear All Filters]
2020-10-14
Wang, Yufeng, Shi, Wanjiao, Jin, Qun, Ma, Jianhua.  2019.  An Accurate False Data Detection in Smart Grid Based on Residual Recurrent Neural Network and Adaptive threshold. 2019 IEEE International Conference on Energy Internet (ICEI). :499—504.
Smart grids are vulnerable to cyber-attacks, which can cause significant damage and huge economic losses. Generally, state estimation (SE) is used to observe the operation of the grid. State estimation of the grid is vulnerable to false data injection attack (FDIA), so diagnosing this type of malicious attack has a major impact on ensuring reliable operation of the power system. In this paper, we present an effective FDIA detection method based on residual recurrent neural network (R2N2) prediction model and adaptive judgment threshold. Specifically, considering the data contains both linear and nonlinear components, the R2N2 model divides the prediction process into two parts: the first part uses the linear model to fit the state data; the second part predicts the nonlinearity of the residuals of the linear prediction model. The adaptive judgment threshold is inferred through fitting the Weibull distribution with the sum of squared errors between the predicted values and observed values. The thorough simulation results demonstrate that our scheme performs better than other prediction based FDIA detection schemes.
2020-07-06
Frias, Alex Davila, Yodo, Nita, Yadav, Om Prakash.  2019.  Mixed-Degradation Profiles Assessment of Critical Components in Cyber-Physical Systems. 2019 Annual Reliability and Maintainability Symposium (RAMS). :1–6.
This paper presents a general model to assess the mixed-degradation profiles of critical components in a Cyber-Physical System (CPS) based on the reliability of its critical physical and software components. In the proposed assessment, the cyber aspect of a CPS was approached from a software reliability perspective. Although extensive research has been done on physical components degradation and software reliability separately, research for the combined physical-software systems is still scarce. The non-homogeneous Poisson Processes (NHPP) software reliability models are deemed to fit well with the real data and have descriptive and predictive abilities, which could make them appropriate to estimate software components reliability. To show the feasibility of the proposed approach, a case study for mixed-degradation profiles assessment is presented with n physical components and one major software component forming a critical subsystem in CPS. Two physical components were assumed to have different degradation paths with the dependency between them. Series and parallel structures were investigated for physical components. The software component failure data was taken from a wireless network switching center and fitted into a Weibull software reliability model. The case study results revealed that mix-degradation profiles of physical components, combined with software component profile, produced a different CPS reliability profile.