Visible to the public Biblio

Filters: Keyword is physical disturbances  [Clear All Filters]
2020-11-16
Januário, F., Cardoso, A., Gil, P..  2019.  A Multi-Agent Middleware for Resilience Enhancement in Heterogeneous Control Systems. 2019 IEEE International Conference on Industrial Technology (ICIT). :988–993.
Modern computing networks that enable distributed computing are comprised of a wide range of heterogeneous devices with different levels of resources, which are interconnected by different networking technologies and communication protocols. This integration, together with the state of the art technologies, has brought into play new uncertainties, associated with physical world and the cyber space. In heterogeneous networked control systems environments, awareness and resilience are two important properties that these systems should bear and comply with. In this work the problem of resilience enhancement in heterogeneous networked control systems is addressed based on a distributed middleware, which is propped up on a hierarchical multi-agent framework, where each of the constituent agents is devoted to a specific task. The proposed architecture takes into account physical and cyber vulnerabilities and ensures state and context awareness, and a minimum level of acceptable operational performance, in response to physical and cyber disturbances. Experiments on a IPv6-based test-bed proved the relevance and benefits offered by the proposed architecture.
2020-10-06
Januário, Fábio, Cardoso, Alberto, Gil, Paulo.  2018.  Resilience Enhancement through a Multi-agent Approach over Cyber-Physical Systems. 2018 10th International Conference on Information Technology and Electrical Engineering (ICITEE). :231—236.

Cyber-physical systems are an important component of most industrial infrastructures that allow the integration of control systems with state of the art information technologies. These systems aggregate distinct communication platforms and networked devices with different capabilities. This integration, has brought into play new uncertainties, not only from the tangible physical world, but also from a cyber space perspective. In light of this situation, awareness and resilience are invaluable properties of these kind of systems. The present work proposes an architecture based on a distributed middleware that relying on a hierarchical multi-agent framework for resilience enhancement. The proposed architecture takes into account physical and cyber vulnerabilities and guarantee state and context awareness, and a minimum level of acceptable operation, in response to physical disturbances and malicious attacks. This framework was evaluated on an IPv6 test-bed comprising several distributed devices, where performance and communication links health are analysed. Results from tests prove the relevance and benefits of the proposed approach.

2020-07-16
Singh, Vivek Kumar, Govindarasu, Manimaran, Porschet, Donald, Shaffer, Edward, Berman, Morris.  2019.  Distributed Power System Simulation using Cyber-Physical Testbed Federation: Architecture, Modeling, and Evaluation. 2019 Resilience Week (RWS). 1:26—32.

Development of an attack-resilient smart grid depends heavily on the availability of a representative environment, such as a Cyber Physical Security (CPS) testbed, to accelerate the transition of state-of-the-art research work to industry deployment by experimental testing and validation. There is an ongoing initiative to develop an interconnected federated testbed to build advanced computing systems and integrated data sharing networks. In this paper, we present a distributed simulation for power system using federated testbed in the context of Wide Area Monitoring System (WAMS) cyber-physical security. In particular, we have applied the transmission line modeling (TLM) technique to split a first order two-bus system into two subsystems: source and load subsystems, which are running in geographically dispersed simulators, while exchanging system variables over the internet. We have leveraged the resources available at Iowa State University's Power Cyber Laboratory (ISU PCL) and the US Army Research Laboratory (US ARL) to perform the distributed simulation, emulate substation and control center networks, and further implement a data integrity attack and physical disturbances targeting WAMS application. Our experimental results reveal the computed wide-area network latency; and model validation errors. Further, we also discuss the high-level conceptual architecture, inspired by NASPInet, necessary for developing the CPS testbed federation.