Biblio
The Internet Protocol version 6 (IPv6) over Low Power Wireless Personal Area Networks (6LoWPAN), which is a promising technology to promote the development of the Internet of Things (IoT), has been proposed to connect millions of IP-based sensing devices over the open Internet. To support the mobility of these resource constrained sensing nodes, the Proxy Mobile IPv6 (PMIPv6) has been proposed as the standard. Although the standard has specified some issues of security and mobility in 6LoWPANs, the issues of supporting secure group handovers have not been addressed much by the current existing solutions. In this paper, to reduce the handover latency and signaling cost, an efficient and secure group mobility scheme is designed to support seamless handovers for a group of resource constrained 6LoWPAN devices. With the consideration of the devices holding limited energy capacities, only simple hash and symmetric encryption method is used. The security analysis and the performance evaluation results show that the proposed 6LoWPAN group handover scheme could not only enhance the security functionalities but also support fast authentication for handovers.
Proxy Mobile IPv6 (PMIPv6) is an IP mobility protocol. In a PMIPv6 domain, local mobility anchor is involved in control as well as data communication. To ease the load on a mobility anchor and avoid single point of failure, the PMIPv6 standard provides the opportunity of having multiple mobility anchors. In this paper, we propose a Software Defined Networking (SDN) based solution to provide load balancing among mobility anchors, in a SDN based PMIPv6 domain. In the proposed solution, a mobility controller performs acts as a central control entity, and performs load monitoring on the mobility anchors. On detecting the load crossing over a threshold for a certain mobility anchor, the controller moves some traffic from highly loaded mobility anchor to relatively less loaded mobility anchor. Analytical model and primitive performance evaluation of the proposed solution is presented in this paper, which demonstrates 5% and 40% improvement in uplink and downlink traffic disruption periods, respectively
In the last decade, the request for Internet access in heterogeneous environments keeps on growing, principally in mobile platforms such as buses, airplanes and trains. Consequently, several extensions and schemes have been introduced to achieve seamless handoff of mobile networks from one subnet to another. Even with these enhancements, the problem of maintaining the security concerns and availability has not been resolved yet, especially, the absence of authentication mechanism between network entities in order to avoid vulnerability from attacks. To eliminate the threats on the interface between the mobile access gateway (MAG) and the mobile router (MR) in improving fast PMIPv6-based network mobility (IFP-NEMO) protocol, we propose a lightweight mutual authentication mechanism in improving fast PMIPv6-based network mobility scheme (LMAIFPNEMO). This scheme uses authentication, authorization and accounting (AAA) servers to enhance the security of the protocol IFP-NEMO which allows the integration of improved fast proxy mobile IPv6 (PMIPv6) in network mobility (NEMO). We use only symmetric cryptographic, generated nonces and hash operation primitives to ensure a secure authentication procedure. Then, we analyze the security aspect of the proposed scheme and evaluate it using the automated validation of internet security protocols and applications (AVISPA) software which has proved that authentication goals are achieved.