Biblio
We propose a secure key generation and distribution scheme for data encryption in classical optical fiber channel. A Delay interferometer (DI) is used to track the random phase fluctuation inside fiber, while the reconfigurable lengths of polarization-maintaining (PM) fiber are set as the source of optical phase fluctuations. The output signals from DI are extracted as the secret key and shared between the two-legal transmitter and receiver. Because of the randomness of local environment and the uniqueness of fiber channel, the phase fluctuation between orthogonal polarization modes (OPMs) can be used as secure keys to enhance the level of security in physical layer. Experimentally, we realize the random key generation and distribution over 25-km standard single-mode fiber (SSMF). Moreover, the proposed key generation scheme has the advantages of low cost, compatible with current optical fiber networks and long distance transmission with optical amplifiers.
Hadoop is developed as a distributed data processing platform for analyzing big data. Enterprises can analyze big data containing users' sensitive information by using Hadoop and utilize them for their marketing. Therefore, researches on data encryption have been widely done to protect the leakage of sensitive data stored in Hadoop. However, the existing researches support only the AES international standard data encryption algorithm. Meanwhile, the Korean government selected ARIA algorithm as a standard data encryption scheme for domestic usages. In this paper, we propose a HDFS data encryption scheme which supports both ARIA and AES algorithms on Hadoop. First, the proposed scheme provides a HDFS block-splitting component that performs ARIA/AES encryption and decryption under the Hadoop distributed computing environment. Second, the proposed scheme provides a variable-length data processing component that can perform encryption and decryption by adding dummy data, in case when the last data block does not contains 128-bit data. Finally, we show from performance analysis that our proposed scheme is efficient for various applications, such as word counting, sorting, k-Means, and hierarchical clustering.
The growing popularity of Android and the increasing amount of sensitive data stored in mobile devices have lead to the dissemination of Android ransomware. Ransomware is a class of malware that makes data inaccessible by blocking access to the device or, more frequently, by encrypting the data; to recover the data, the user has to pay a ransom to the attacker. A solution for this problem is to backup the data. Although backup tools are available for Android, these tools may be compromised or blocked by the ransomware itself. This paper presents the design and implementation of RANSOMSAFEDROID, a TrustZone based backup service for mobile devices. RANSOMSAFEDROID is protected from malware by leveraging the ARM TrustZone extension and running in the secure world. It does backup of files periodically to a secure local persistent partition and pushes these backups to external storage to protect them from ransomware. Initially, RANSOMSAFEDROID does a full backup of the device filesystem, then it does incremental backups that save the changes since the last backup. As a proof-of-concept, we implemented a RANSOMSAFEDROID prototype and provide a performance evaluation using an i.MX53 development board.
The presented work of this paper is to propose the implementation of chaotic crypto-system with the new key generator using chaos in digital filter for data encryption and decryption. The chaos in digital filter of the second order system is produced by the coefficients which are initialed in the key generator to produce other new coefficients. Private key system using the initial coefficients value condition and dynamic input as password of 16 characters is to generate the coefficients for crypto-system. In addition, we have tension specifically to propose the solution of data security in lightweight cryptography based on external and internal key in which conducts with the appropriate key sensitivity plus high performance. The chaos in digital filter has functioned as the main major in the system. The experimental results illustrate that the proposed data encryption with new key generator system is the high sensitive system with accuracy key test 99% and can make data more secure with high performance.
Today, outsourcing query processing tasks to remote cloud servers becomes a viable option; such outsourcing calls for encrypting data stored at the server so as to render it secure against eavesdropping adversaries and/or an honest-but-curious server itself. At the same time, to be efficiently managed, outsourced data should be indexed, and even adaptively so, as a side-effect of query processing. Computationally heavy encryption schemes render such outsourcing unattractive; an alternative, Order-Preserving Encryption Scheme (OPES), intentionally preserves and reveals the order in the data, hence is unattractive from the security viewpoint. In this paper, we propose and analyze a scheme for lightweight and indexable encryption, based on linear-algebra operations. Our scheme provides higher security than OPES and allows for range and point queries to be efficiently evaluated over encrypted numeric data, with decryption performed at the client side. We implement a prototype that performs incremental, query-triggered adaptive indexing over encrypted numeric data based on this scheme, without leaking order information in advance, and without prohibitive overhead, as our extensive experimental study demonstrates.
Easy sharing files in public network that is intended only for certain people often resulting in the leaking of sharing folders or files and able to be read also by others who are not authorized. Secure data is one of the most challenging issues in data sharing systems. Here, Ciphertext-Policy Attribute-Based Encryption (CP-ABE) is a reliable asymmetric encryption mechanism which deals with secure data and used for data encryption. It is not necessary encrypted to one particular user, but recipient is only able to decrypt if and only if the attribute set of his private key match with the specified policy in the ciphertext. In this paper, we propose a secure data exchange using CP-ABE with authentication feature. The data is attribute-based encrypted to satisfy confidentiality feature and authenticated to satisfy data authentication simultaneously.
The data processing capabilities of MapReduce systems pioneered with the on-demand scalability of cloud computing have enabled the Big Data revolution. However, the data controllers/owners worried about the privacy and accountability impact of storing their data in the cloud infrastructures as the existing cloud computing solutions provide very limited control on the underlying systems. The intuitive approach - encrypting data before uploading to the cloud - is not applicable to MapReduce computation as the data analytics tasks are ad-hoc defined in the MapReduce environment using general programming languages (e.g, Java) and homomorphic encryption methods that can scale to big data do not exist. In this paper, we address the challenges of determining and detecting unauthorized access to data stored in MapReduce based cloud environments. To this end, we introduce alarm raising honeypots distributed over the data that are not accessed by the authorized MapReduce jobs, but only by the attackers and/or unauthorized users. Our analysis shows that unauthorized data accesses can be detected with reasonable performance in MapReduce based cloud environments.
The speedy advancement in computer hardware has caused data encryption to no longer be a 100% safe solution for secure communications. To battle with adversaries, a countermeasure is to avoid message routing through certain insecure areas, e.g., Malicious countries and nodes. To this end, avoidance routing has been proposed over the past few years. However, the existing avoidance protocols are single-path-based, which means that there must be a safe path such that no adversary is in the proximity of the whole path. This condition is difficult to satisfy. As a result, routing opportunities based on the existing avoidance schemes are limited. To tackle this issue, we propose an avoidance routing framework, namely Multi-Path Avoidance Routing (MPAR). In our approach, a source node first encodes a message into k different pieces, and each piece is sent via k different paths. The destination can assemble the original message easily, while an adversary cannot recover the original message unless she obtains all the pieces. We prove that the coding scheme achieves perfect secrecy against eavesdropping under the condition that an adversary has incomplete information regarding the message. The simulation results validate that the proposed MPAR protocol achieves its design goals.
Security of secret data has been a major issue of concern from ancient time. Steganography and cryptography are the two techniques which are used to reduce the security threat. Cryptography is an art of converting secret message in other than human readable form. Steganography is an art of hiding the existence of secret message. These techniques are required to protect the data theft over rapidly growing network. To achieve this there is a need of such a system which is very less susceptible to human visual system. In this paper a new technique is going to be introducing for data transmission over an unsecure channel. In this paper secret data is compressed first using LZW algorithm before embedding it behind any cover media. Data is compressed to reduce its size. After compression data encryption is performed to increase the security. Encryption is performed with the help of a key which make it difficult to get the secret message even if the existence of the secret message is reveled. Now the edge of secret message is detected by using canny edge detector and then embedded secret data is stored there with the help of a hash function. Proposed technique is implemented in MATLAB and key strength of this project is its huge data hiding capacity and least distortion in Stego image. This technique is applied over various images and the results show least distortion in altered image.
Encryption and decryption of data in an efficient manner is one of the challenging aspects of modern computer science. This paper introduces a new algorithm for Cryptography to achieve a higher level of security. In this algorithm it becomes possible to hide the meaning of a message in unprintable characters. The main issue of this paper is to make the encrypted message undoubtedly unprintable using several times of ASCII conversions and a cyclic mathematical function. Dividing the original message into packets binary matrices are formed for each packet to produce the unprintable encrypted message through making the ASCII value for each character below 32. Similarly, several ASCII conversions and the inverse cyclic mathematical function are used to decrypt the unprintable encrypted message. The final encrypted message received from three times of encryption becomes an unprintable text through which the algorithm possesses higher level of security without increasing the size of data or loosing of any data.
Cloud Computing delivers the service to the users by having reliable internet connection. In the secure cloud, services are stored and shared by multiple users because of less cost and data maintenance. Sharing the data is the vital intention of cloud data centres. On the other hand, storing the sensitive information is the privacy concern of the cloud. Cloud service provider has to protect the stored client's documents and applications in the cloud by encrypting the data to provide data integrity. Designing proficient document sharing among the group members in the cloud is the difficult task because of group user membership change and conserving document and group user identity confidentiality. To propose the fortified data sharing scheme in secret manner for providing efficient group revocation Advanced Encryption Standard scheme is used. Proposed System contributes efficient group authorization, authentication, confidentiality and access control and document security. To provide more data security Advanced Encryption Standard algorithm is used to encrypt the document. By asserting security and confidentiality in this proficient method securely share the document among the multiple cloud user.