Visible to the public Biblio

Filters: Keyword is API  [Clear All Filters]
2020-03-27
Liu, Yingying, Wang, Yiwei.  2019.  A Robust Malware Detection System Using Deep Learning on API Calls. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :1456–1460.
With the development of technology, the massive malware become the major challenge to current computer security. In our work, we implemented a malware detection system using deep learning on API calls. By means of cuckoo sandbox, we extracted the API calls sequence of malicious programs. Through filtering and ordering the redundant API calls, we extracted the valid API sequences. Compared with GRU, BGRU, LSTM and SimpleRNN, we evaluated the BLSTM on the massive datasets including 21,378 samples. The experimental results demonstrate that BLSTM has the best performance for malware detection, reaching the accuracy of 97.85%.
2019-11-25
Pei, Xin, Li, Xuefeng, Wu, Xiaochuan, Zheng, Kaiyan, Zhu, Boheng, Cao, Yixin.  2019.  Assured Delegation on Data Storage and Computation via Blockchain System. 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC). :0055–0061.

With the widespread of cloud computing, the delegation of storage and computing is becoming a popular trend. Concerns on data integrity, security, user privacy as well as the correctness of execution are highlighted due to the untrusted remote data manipulation. Most of existing proposals solve the integrity checking and verifiable computation problems by challenge-response model, but are lack of scalability and reusability. Via blockchain, we achieve efficient and transparent public verifiable delegation for both storage and computing. Meanwhile, the smart contract provides API for request handling and secure data query. The security and privacy issues of data opening are settled by applying cryptographic algorithms all through the delegations. Additionally, any access to the outsourced data requires the owner's authentication, so that the dat transference and utilization are under control.

2019-07-01
Ha\c silo\u glu, A., Bali, A..  2018.  Central Audit Logging Mechanism in Personal Data Web Services. 2018 6th International Symposium on Digital Forensic and Security (ISDFS). :1-3.

Personal data have been compiled and harnessed by a great number of establishments to execute their legal activities. Establishments are legally bound to maintain the confidentiality and security of personal data. Hence it is a requirement to provide access logs for the personal information. Depending on the needs and capacity, personal data can be opened to the users via platforms such as file system, database and web service. Web service platform is a popular alternative since it is autonomous and can isolate the data source from the user. In this paper, the way to log personal data accessed via web service method has been discussed. As an alternative to classical method in which logs were recorded and saved by client applications, a different mechanism of forming a central audit log with API manager has been investigated. By forging a model policy to exemplify central logging method, its advantages and disadvantages have been explored. It has been concluded in the end that this model could be employed in centrally recording audit logs.

2019-03-22
Dooley, Rion, Brandt, Steven R., Fonner, John.  2018.  The Agave Platform: An Open, Science-as-a-Service Platform for Digital Science. Proceedings of the Practice and Experience on Advanced Research Computing. :28:1-28:8.

The Agave Platform first appeared in 2011 as a pilot project for the iPlant Collaborative [11]. In its first two years, Foundation saw over 40% growth per month, supporting 1000+ clients, 600+ applications, 4 HPC systems at 3 centers across the US. It also gained users outside of plant biology. To better serve the needs of the general open science community, we rewrote Foundation as a scalable, cloud native application and named it the Agave Platform. In this paper we present the Agave Platform, a Science-as-a-Service (ScaaS) platform for reproducible science. We provide a brief history and technical overview of the project, and highlight three case studies leveraging the platform to create synergistic value for their users.

2019-02-14
Sun, A., Gao, G., Ji, T., Tu, X..  2018.  One Quantifiable Security Evaluation Model for Cloud Computing Platform. 2018 Sixth International Conference on Advanced Cloud and Big Data (CBD). :197-201.

Whatever one public cloud, private cloud or a mixed cloud, the users lack of effective security quantifiable evaluation methods to grasp the security situation of its own information infrastructure on the whole. This paper provides a quantifiable security evaluation system for different clouds that can be accessed by consistent API. The evaluation system includes security scanning engine, security recovery engine, security quantifiable evaluation model, visual display module and etc. The security evaluation model composes of a set of evaluation elements corresponding different fields, such as computing, storage, network, maintenance, application security and etc. Each element is assigned a three tuple on vulnerabilities, score and repair method. The system adopts ``One vote vetoed'' mechanism for one field to count its score and adds up the summary as the total score, and to create one security view. We implement the quantifiable evaluation for different cloud users based on our G-Cloud platform. It shows the dynamic security scanning score for one or multiple clouds with visual graphs and guided users to modify configuration, improve operation and repair vulnerabilities, so as to improve the security of their cloud resources.

2019-02-08
Sawant, Anand Ashok, Aniche, Maurício, van Deursen, Arie, Bacchelli, Alberto.  2018.  Understanding Developers' Needs on Deprecation As a Language Feature. Proceedings of the 40th International Conference on Software Engineering. :561-571.

Deprecation is a language feature that allows API producers to mark a feature as obsolete. We aim to gain a deep understanding of the needs of API producers and consumers alike regarding deprecation. To that end, we investigate why API producers deprecate features, whether they remove deprecated features, how they expect consumers to react, and what prompts an API consumer to react to deprecation. To achieve this goal we conduct semi-structured interviews with 17 third-party Java API producers and survey 170 Java developers. We observe that the current deprecation mechanism in Java and the proposal to enhance it does not address all the needs of a developer. This leads us to propose and evaluate three further enhancements to the deprecation mechanism.

2018-04-02
Alkhateeb, E. M. S..  2017.  Dynamic Malware Detection Using API Similarity. 2017 IEEE International Conference on Computer and Information Technology (CIT). :297–301.

Hackers create different types of Malware such as Trojans which they use to steal user-confidential information (e.g. credit card details) with a few simple commands, recent malware however has been created intelligently and in an uncontrolled size, which puts malware analysis as one of the top important subjects of information security. This paper proposes an efficient dynamic malware-detection method based on API similarity. This proposed method outperform the traditional signature-based detection method. The experiment evaluated 197 malware samples and the proposed method showed promising results of correctly identified malware.

Sonune, S., Kalbande, D..  2017.  IoT Enabled API for Secure Transfer of Medical Data. 2017 International Conference on Intelligent Computing and Control (I2C2). :1–6.

Internet of Things devices (IoT-D) have limited resource capacity. But these devices can share resources. Hence, they are being used in variety of applications in various fields including smart city, smart energy, healthcare etc. Traditional practice of medicine and healthcare is mostly heuristic driven. There exist big gaps in our understanding of human body, disease and health. We can use upcoming digital revolution to turn healthcare upside down with data-driven medical science. Various healthcare companies now provide remote healthcare services. Healthcare professionals are also adapting remote healthcare monitoring practices so as to monitor patients who are either hospitalized or executing their normal lifestyle activities at remote locations. Wearable devices available in the market calculate different health parameters and corresponding applications pass the information to server through their proprietary platforms. However, these devices or applications cannot directly communicate or share the data. So, there needs an API to access health and wellness data from different wearable medical devices and applications. This paper proposes and demonstrates an API to connect different wearable healthcare devices and transfer patient personal information securely to the doctor or health provider.

2018-02-06
Khan, M. F. F., Sakamura, K..  2017.  A Tamper-Resistant Digital Token-Based Rights Management System. 2017 International Carnahan Conference on Security Technology (ICCST). :1–6.

Use of digital token - which certifies the bearer's rights to some kind of products or services - is quite common nowadays for its convenience, ease of use and cost-effectiveness. Many of such digital tokens, however, are produced with software alone, making them vulnerable to forgery, including alteration and duplication. For a more secure safeguard for both token owner's right and service provider's accountability, digital tokens should be tamper-resistant as much as possible in order for them to withstand physical attacks as well. In this paper, we present a rights management system that leverages tamper-resistant digital tokens created by hardware-software collaboration in our eTRON architecture. The system features the complete life cycle of a digital token from generation to storage and redemption. Additionally, it provides a secure mechanism for transfer of rights in a peer-to-peer manner over the Internet. The proposed system specifies protocols for permissible manipulation on digital tokens, and subsequently provides a set of APIs for seamless application development. Access privileges to the tokens are strictly defined and state-of-the-art asymmetric cryptography is used for ensuring their confidentiality. Apart from the digital tokens being physically tamper-resistant, the protocols involved in the system are proven to be secure against attacks. Furthermore, an authentication mechanism is implemented that invariably precedes any operation involving the digital token in question. The proposed system presents clear security gains compared to existing systems that do not take tamper-resistance into account, and schemes that use symmetric key cryptography.

2017-12-20
Alqahtani, S. S., Eghan, E. E., Rilling, J..  2017.  Recovering Semantic Traceability Links between APIs and Security Vulnerabilities: An Ontological Modeling Approach. 2017 IEEE International Conference on Software Testing, Verification and Validation (ICST). :80–91.

Over the last decade, a globalization of the software industry took place, which facilitated the sharing and reuse of code across existing project boundaries. At the same time, such global reuse also introduces new challenges to the software engineering community, with not only components but also their problems and vulnerabilities being now shared. For example, vulnerabilities found in APIs no longer affect only individual projects but instead might spread across projects and even global software ecosystem borders. Tracing these vulnerabilities at a global scale becomes an inherently difficult task since many of the existing resources required for such analysis still rely on proprietary knowledge representation. In this research, we introduce an ontology-based knowledge modeling approach that can eliminate such information silos. More specifically, we focus on linking security knowledge with other software knowledge to improve traceability and trust in software products (APIs). Our approach takes advantage of the Semantic Web and its reasoning services, to trace and assess the impact of security vulnerabilities across project boundaries. We present a case study, to illustrate the applicability and flexibility of our ontological modeling approach by tracing vulnerabilities across project and resource boundaries.

2017-10-25
Amin, Maitri.  2016.  A Survey of Financial Losses Due to Malware. Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies. :145:1–145:4.

General survey stat that the main damage malware can cause is to slow down their PCs and perhaps crash some websites which is quite wrong, The Russian antivirus software developer teamed up with B2B International for a study worldwide recently, shown 36% of users lose money online as a result of a malware attack. Currently malware can't be detected by traditional way based anti-malware tools due to their polymorphic and/or metamorphic nature. Here we have improvised a current detection technique of malware based on mining Application Programming Interface (API) calls and developed the first public dataset to promote malware research. • In survey of cyber-attacks 6.2% financial attacks are due to malware which increase to 1.3 % in 2013 compared to 2012. • Financial data theft causes 27.6% to reach 28,400,000. Victims abused by this targeting malware countered 3,800,000, which is 18.6% greater than previous year. • Finance-committed malware, associated with Bitcoin has demonstrated the most dynamic development. Where's, Zeus is still top listed for playing important roles to steal banking credentials. Solutionary study stats that companies are spending a staggering amount of money in the aftermath of damaging attack: DDoS attacks recover \$6,500 per hour from malware and more than \$3,000 each time for up to 30 days to moderate and improve from malware attacks. [1]

2017-05-18
Huang, Waylon.  2016.  Discovering Additional Violations of Java API Invariants. Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering. :1145–1147.

In the absence of formal specifications or test oracles, automating testing is made possible by the fact that a program must satisfy certain requirements set down by the programming language. This work describes Randoop, an automatic unit test generator which checks for invariants specified by the Java API. Randoop is able to detect violations to invariants as specified by the Java API and create error tests that reveal related bugs. Randoop is also able to produce regression tests, meant to be added to regression test suites, that capture expected behavior. We discuss additional extensions that we have made to Randoop which expands its capability for the detection of violation of specified invariants. We also examine an optimization and a heuristic for making the invariant checking process more efficient.

Nadi, Sarah, Krüger, Stefan, Mezini, Mira, Bodden, Eric.  2016.  Jumping Through Hoops: Why Do Java Developers Struggle with Cryptography APIs? Proceedings of the 38th International Conference on Software Engineering. :935–946.

To protect sensitive data processed by current applications, developers, whether security experts or not, have to rely on cryptography. While cryptography algorithms have become increasingly advanced, many data breaches occur because developers do not correctly use the corresponding APIs. To guide future research into practical solutions to this problem, we perform an empirical investigation into the obstacles developers face while using the Java cryptography APIs, the tasks they use the APIs for, and the kind of (tool) support they desire. We triangulate data from four separate studies that include the analysis of 100 StackOverflow posts, 100 GitHub repositories, and survey input from 48 developers. We find that while developers find it difficult to use certain cryptographic algorithms correctly, they feel surprisingly confident in selecting the right cryptography concepts (e.g., encryption vs. signatures). We also find that the APIs are generally perceived to be too low-level and that developers prefer more task-based solutions.

Amani, Sven, Nadi, Sarah, Nguyen, Hoan A., Nguyen, Tien N., Mezini, Mira.  2016.  MUBench: A Benchmark for API-misuse Detectors. Proceedings of the 13th International Conference on Mining Software Repositories. :464–467.

Over the last few years, researchers proposed a multitude of automated bug-detection approaches that mine a class of bugs that we call API misuses. Evaluations on a variety of software products show both the omnipresence of such misuses and the ability of the approaches to detect them. This work presents MuBench, a dataset of 89 API misuses that we collected from 33 real-world projects and a survey. With the dataset we empirically analyze the prevalence of API misuses compared to other types of bugs, finding that they are rare, but almost always cause crashes. Furthermore, we discuss how to use it to benchmark and compare API-misuse detectors.

Nguyen, Trong Duc, Nguyen, Anh Tuan, Nguyen, Tien N..  2016.  Mapping API Elements for Code Migration with Vector Representations. Proceedings of the 38th International Conference on Software Engineering Companion. :756–758.

Problem. Code migration between languages is challenging partly because different languages require developers to use different software libraries and frameworks. For example, in Java, Java Development Kit library (JDK) is a popular toolkit while .NET is the main framework used in C\# software development. Code migration requires not only the mappings between the language constructs (e.g., statements, expressions) but also the mappings among the APIs of the libraries/frameworks used in two languages. For example, in Java, to write to a file, one can use FileWriter.write of FileWriter, and in C\#, one can achieve the same function with StreamWriter.Write of StreamWriter. Such mapping is called API mapping.

Indela, Soumya, Kulkarni, Mukul, Nayak, Kartik, Dumitras, Tudor.  2016.  Helping Johnny Encrypt: Toward Semantic Interfaces for Cryptographic Frameworks. Proceedings of the 2016 ACM International Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software. :180–196.

Several mature cryptographic frameworks are available, and they have been utilized for building complex applications. However, developers often use these frameworks incorrectly and introduce security vulnerabilities. This is because current cryptographic frameworks erode abstraction boundaries, as they do not encapsulate all the framework-specific knowledge and expect developers to understand security attacks and defenses. Starting from the documented misuse cases of cryptographic APIs, we infer five developer needs and we show that a good API design would address these needs only partially. Building on this observation, we propose APIs that are semantically meaningful for developers, we show how these interfaces can be implemented consistently on top of existing frameworks using novel and known design patterns, and we propose build management hooks for isolating security workarounds needed during the development and test phases. Through two case studies, we show that our APIs can be utilized to implement non-trivial client-server protocols and that they provide a better separation of concerns than existing frameworks. We also discuss the challenges and potential approaches for evaluating our solution. Our semantic interfaces represent a first step toward preventing misuses of cryptographic APIs.

Nguyen, Anh Tuan, Hilton, Michael, Codoban, Mihai, Nguyen, Hoan Anh, Mast, Lily, Rademacher, Eli, Nguyen, Tien N., Dig, Danny.  2016.  API Code Recommendation Using Statistical Learning from Fine-grained Changes. Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering. :511–522.

Learning and remembering how to use APIs is difficult. While code-completion tools can recommend API methods, browsing a long list of API method names and their documentation is tedious. Moreover, users can easily be overwhelmed with too much information. We present a novel API recommendation approach that taps into the predictive power of repetitive code changes to provide relevant API recommendations for developers. Our approach and tool, APIREC, is based on statistical learning from fine-grained code changes and from the context in which those changes were made. Our empirical evaluation shows that APIREC correctly recommends an API call in the first position 59% of the time, and it recommends the correct API call in the top five positions 77% of the time. This is a significant improvement over the state-of-the-art approaches by 30-160% for top-1 accuracy, and 10-30% for top-5 accuracy, respectively. Our result shows that APIREC performs well even with a one-time, minimal training dataset of 50 publicly available projects.

Tan, Antoine Tran, Kaiser, Hartmut.  2016.  Extending C++ with Co-array Semantics. Proceedings of the 3rd ACM SIGPLAN International Workshop on Libraries, Languages, and Compilers for Array Programming. :63–68.

The current trend of large scientific computing problems is to align as much as possible to a Single Programming Multiple Data (or SPMD) scheme when the application algorithms are conducive to parallelization and vectorization. This reduces the complexity of code because the processors or (computational nodes) perform the same instructions which allows for better performance as algorithms work on local data sets instead of continuously transferring data from one locality to another. However, certain applications, such as stencil problems, demonstrate the need to move data to or from remote localities. This involves an additional degree of complexity, as one must know with which localities to exchange data. In order to solve this issue, Fortran has extended its scalar element indexing approach to distributed structures of elements. In this extension, a structure of scalar elements is attributed a ”co-index” and lives in a specific locality. A co-index provides the application with enough information to retrieve the corresponding data reference. In C++, containers present themselves as a ”smarter” alternative of Fortran arrays but there are still no corresponding standardized features similar to the Fortran co-indexing approach. In this paper, we present an implementation of such features in HPX, a general purpose C++ runtime system for applications of any scale. We describe how the combination of the HPX features and the actual C++ Standard makes it easy to define a high performance API similar to Co-Array Fortran.

Hasan, Samir, King, Zachary, Hafiz, Munawar, Sayagh, Mohammed, Adams, Bram, Hindle, Abram.  2016.  Energy Profiles of Java Collections Classes. Proceedings of the 38th International Conference on Software Engineering. :225–236.

We created detailed profiles of the energy consumed by common operations done on Java List, Map, and Set abstractions. The results show that the alternative data types for these abstractions differ significantly in terms of energy consumption depending on the operations. For example, an ArrayList consumes less energy than a LinkedList if items are inserted at the middle or at the end, but consumes more energy than a LinkedList if items are inserted at the start of the list. To explain the results, we explored the memory usage and the bytecode executed during an operation. Expensive computation tasks in the analyzed bytecode traces appeared to have an energy impact, but memory usage did not contribute. We evaluated our profiles by using them to selectively replace Collections types used in six applications and libraries. We found that choosing the wrong Collections type, as indicated by our profiles, can cost even 300% more energy than the most efficient choice. Our work shows that the usage context of a data structure and our measured energy profiles can be used to decide between alternative Collections implementations.

Lin, Ziyi, Zhong, Hao, Chen, Yuting, Zhao, Jianjun.  2016.  LockPeeker: Detecting Latent Locks in Java APIs. Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering. :368–378.

Detecting lock-related defects has long been a hot research topic in software engineering. Many efforts have been spent on detecting such deadlocks in concurrent software systems. However, latent locks may be hidden in application programming interface (API) methods whose source code may not be accessible to developers. Many APIs have latent locks. For example, our study has shown that J2SE alone can have 2,000+ latent locks. As latent locks are less known by developers, they can cause deadlocks that are hard to perceive or diagnose. Meanwhile, the state-of-the-art tools mostly handle API methods as black boxes, and cannot detect deadlocks that involve such latent locks. In this paper, we propose a novel black-box testing approach, called LockPeeker, that reveals latent locks in Java APIs. The essential idea of LockPeeker is that latent locks of a given API method can be revealed by testing the method and summarizing the locking effects during testing execution. We have evaluated LockPeeker on ten real-world Java projects. Our evaluation results show that (1) LockPeeker detects 74.9% of latent locks in API methods, and (2) it enables state-of-the-art tools to detect deadlocks that otherwise cannot be detected.

Gyori, Alex, Lambeth, Ben, Shi, August, Legunsen, Owolabi, Marinov, Darko.  2016.  NonDex: A Tool for Detecting and Debugging Wrong Assumptions on Java API Specifications. Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering. :993–997.

We present NonDex, a tool for detecting and debugging wrong assumptions on Java APIs. Some APIs have underdetermined specifications to allow implementations to achieve different goals, e.g., to optimize performance. When clients of such APIs assume stronger-than-specified guarantees, the resulting client code can fail. For example, HashSet’s iteration order is underdetermined, and code assuming some implementation-specific iteration order can fail. NonDex helps to proactively detect and debug such wrong assumptions. NonDex performs detection by randomly exploring different behaviors of underdetermined APIs during test execution. When a test fails during exploration, NonDex searches for the invocation instance of the API that caused the failure. NonDex is open source, well-integrated with Maven, and also runs from the command line. During our experiments with the NonDex Maven plugin, we detected 21 new bugs in eight Java projects from GitHub, and, using the debugging feature of NonDex, we identified the underlying wrong assumptions for these 21 new bugs and 54 previously detected bugs. We opened 13 pull requests; developers already accepted 12, and one project changed the continuous-integration configuration to run NonDex on every push. The demo video is at: https://youtu.be/h3a9ONkC59c

Fowkes, Jaroslav, Sutton, Charles.  2016.  Parameter-free Probabilistic API Mining Across GitHub. Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering. :254–265.

Existing API mining algorithms can be difficult to use as they require expensive parameter tuning and the returned set of API calls can be large, highly redundant and difficult to understand. To address this, we present PAM (Probabilistic API Miner), a near parameter-free probabilistic algorithm for mining the most interesting API call patterns. We show that PAM significantly outperforms both MAPO and UPMiner, achieving 69% test-set precision, at retrieving relevant API call sequences from GitHub. Moreover, we focus on libraries for which the developers have explicitly provided code examples, yielding over 300,000 LOC of hand-written API example code from the 967 client projects in the data set. This evaluation suggests that the hand-written examples actually have limited coverage of real API usages.

Gu, Xiaodong, Zhang, Hongyu, Zhang, Dongmei, Kim, Sunghun.  2016.  Deep API Learning. Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering. :631–642.

Developers often wonder how to implement a certain functionality (e.g., how to parse XML files) using APIs. Obtaining an API usage sequence based on an API-related natural language query is very helpful in this regard. Given a query, existing approaches utilize information retrieval models to search for matching API sequences. These approaches treat queries and APIs as bags-of-words and lack a deep understanding of the semantics of the query. We propose DeepAPI, a deep learning based approach to generate API usage sequences for a given natural language query. Instead of a bag-of-words assumption, it learns the sequence of words in a query and the sequence of associated APIs. DeepAPI adapts a neural language model named RNN Encoder-Decoder. It encodes a word sequence (user query) into a fixed-length context vector, and generates an API sequence based on the context vector. We also augment the RNN Encoder-Decoder by considering the importance of individual APIs. We empirically evaluate our approach with more than 7 million annotated code snippets collected from GitHub. The results show that our approach generates largely accurate API sequences and outperforms the related approaches.

2017-03-08
Casola, V., Benedictis, A. D., Rak, M., Villano, U..  2015.  SLA-Based Secure Cloud Application Development: The SPECS Framework. 2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC). :337–344.

The perception of lack of control over resources deployed in the cloud may represent one of the critical factors for an organization to decide to cloudify or not their own services. Furthermore, in spite of the idea of offering security-as-a-service, the development of secure cloud applications requires security skills that can slow down the adoption of the cloud for nonexpert users. In the recent years, the concept of Security Service Level Agreements (Security SLA) is assuming a key role in the provisioning of cloud resources. This paper presents the SPECS framework, which enables the development of secure cloud applications covered by a Security SLA. The SPECS framework offers APIs to manage the whole Security SLA life cycle and provides all the functionalities needed to automatize the enforcement of proper security mechanisms and to monitor userdefined security features. The development process of SPECS applications offering security-enhanced services is illustrated, presenting as a real-world case study the provisioning of a secure web server.

2015-05-06
Ochian, A., Suciu, G., Fratu, O., Voicu, C., Suciu, V..  2014.  An overview of cloud middleware services for interconnection of healthcare platforms. Communications (COMM), 2014 10th International Conference on. :1-4.

Using heterogeneous clouds has been considered to improve performance of big-data analytics for healthcare platforms. However, the problem of the delay when transferring big-data over the network needs to be addressed. The purpose of this paper is to analyze and compare existing cloud computing environments (PaaS, IaaS) in order to implement middleware services. Understanding the differences and similarities between cloud technologies will help in the interconnection of healthcare platforms. The paper provides a general overview of the techniques and interfaces for cloud computing middleware services, and proposes a cloud architecture for healthcare. Cloud middleware enables heterogeneous devices to act as data sources and to integrate data from other healthcare platforms, but specific APIs need to be developed. Furthermore, security and management problems need to be addressed, given the heterogeneous nature of the communication and computing environment. The present paper fills a gap in the electronic healthcare register literature by providing an overview of cloud computing middleware services and standardized interfaces for the integration with medical devices.