Liu, Jianwei, Zou, Xiang, Han, Jinsong, Lin, Feng, Ren, Kui.
2020.
BioDraw: Reliable Multi-Factor User Authentication with One Single Finger Swipe. 2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS). :1–10.
Multi-factor user authentication (MFUA) becomes increasingly popular due to its superior security comparing with single-factor user authentication. However, existing MFUAs require multiple interactions between users and different authentication components when sensing the multiple factors, leading to extra overhead and bad use experiences. In this paper, we propose a secure and user-friendly MFUA system, namely BioDraw, which utilizes four categories of biometrics (impedance, geometry, composition, and behavior) of human hand plus the pattern-based password to identify and authenticate users. A user only needs to draw a pattern on a RFID tag array, while four biometrics can be simultaneously collected. Particularly, we design a gradient-based pattern recognition algorithm for pattern recognition and then a CNN-LSTM-based classifier for user recognition. Furthermore, to guarantee the systemic security, we propose a novel anti-spoofing scheme, called Binary ALOHA, which utilizes the inhabit randomness of RFID systems. We perform extensive experiments over 21 volunteers. The experiment result demonstrates that BioDraw can achieve a high authentication accuracy (with a false reject rate less than 2%) and is effective in defending against various attacks.
KOSE, Busra OZDENIZCI, BUK, Onur, MANTAR, Haci Ali, COSKUN, Vedat.
2020.
TrustedID: An Identity Management System Based on OpenID Connect Protocol. 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT). :1–6.
Today, authentication and non-repudiation of actions are essential requirements for almost all mobile services. In this respect, various common identity systems (such as Facebook Login, Google Sign-In, Apple ID and many other) based on OpenID Connect protocol have been introduced that support easier password management for users, and reduce potential risks by securing the service provider and the user. With the widespread use of the Internet, smartphones can offer many services with rich content. The use of common identity systems on mobile devices with a high security level is becoming a more important requirement. At this point, MNOs (Mobile Network Operators) have a significant potential and capability for providing common identity services. The existing solutions based on Mobile Connect standard provide generally low level of assurance. Accordingly, there is an urgent need for a common identity system that provide higher level of assurance and security for service providers. This study presents a multi-factor authentication mechanism called TrustedID system that is based on Mobile Connect and OpenID Connect standards, and ensures higher level of assurance. The proposed system aims to use three identity factors of the user in order to access sensitive mobile services on the smartphone. The proposed authentication system will support improvement of new value-added services and also support the development of mobile ecosystem.
Bezzateev, S., Fomicheva, S..
2020.
Soft Multi-Factor Authentication. 2020 Wave Electronics and Its Application in Information and Telecommunication Systems (WECONF). :1–7.
The Classification of devices involved in authentication and classification of authentication systems by type and combination of protocols used are proposed. The system architecture for soft multi-factor authentication designed and simulated.
Bavishi, Jatna, Shaikh, Mohammed Saad, Patel, Reema.
2020.
Scalable and Efficient Mutual Authentication Strategy in Fog Computing. 2020 8th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering (MobileCloud). :77–83.
Fog Computing paradigm extends the cloud computing to the edge of the network to resolve the problem of latency but this introduces new security and privacy issues. So, it is necessary that a user must be authenticated before initiating data exchange in order to preserve the integrity. Secondly, in fog computing, fog node must also be authorized for ensuring the proper behaviour of fog node and validate that the fog node is not corrupted. Hence, we proposed a mutual authentication scheme which verifies both the fog node and the end user before the transfer of data. Traditional authentication protocol uses digital certificate and digital signature which faces the problem of scalability and more complexity respectively. So, in the proposed architecture, the problem of scalability and complexity is reduced to a greater extent compared to traditional authentication techniques. The proposed scheme also ensures multi-factor authentication of the user before sending the data and it is way too efficient.
Kinai, Andrew, Otieno, Fred, Bore, Nelson, Weldemariam, Komminist.
2020.
Multi-Factor Authentication for Users of Non-Internet Based Applications of Blockchain-Based Platforms. 2020 IEEE International Conference on Blockchain (Blockchain). :525–531.
Attacks targeting several millions of non-internet based application users are on the rise. These applications such as SMS and USSD typically do not benefit from existing multi-factor authentication methods due to the nature of their interaction interfaces and mode of operations. To address this problem, we propose an approach that augments blockchain with multi-factor authentication based on evidence from blockchain transactions combined with risk analysis. A profile of how a user performs transactions is built overtime and is used to analyse the risk level of each new transaction. If a transaction is flagged as high risk, we generate n-factor layers of authentication using past endorsed blockchain transactions. A demonstration of how we used the proposed approach to authenticate critical financial transactions in a blockchain-based asset financing platform is also discussed.
Al Guqhaiman, Ahmed, Akanbi, Oluwatobi, Aljaedi, Amer, Chow, C. Edward.
2020.
Lightweight Multi-Factor Authentication for Underwater Wireless Sensor Networks. 2020 International Conference on Computational Science and Computational Intelligence (CSCI). :188–194.
Underwater Wireless Sensor Networks (UWSNs) are liable to malicious attacks due to limited bandwidth, limited power, high propagation delay, path loss, and variable speed. The major differences between UWSNs and Terrestrial Wireless Sensor Networks (TWSNs) necessitate a new mechanism to secure UWSNs. The existing Media Access Control (MAC) and routing protocols have addressed the network performance of UWSNs, but are vulnerable to several attacks. The secure MAC and routing protocols must exist to detect Sybil, Blackhole, Wormhole, Hello Flooding, Acknowledgment Spoofing, Selective Forwarding, Sinkhole, and Exhaustion attacks. These attacks can disrupt or disable the network connection. Hence, these attacks can degrade the network performance and total loss can be catastrophic in some applications, like monitoring oil/gas spills. Several researchers have studied the security of UWSNs, but most of the works detect malicious attacks solely based on a certain predefined threshold. It is not optimal to detect malicious attacks after the threshold value is met. In this paper, we propose a multi-factor authentication model that is based on zero-knowledge proof to detect malicious activities and secure UWSNs from several attacks.
Jagadamba, G, Sheeba, R, Brinda, K N, Rohini, K C, Pratik, S K.
2020.
Adaptive E-Learning Authentication and Monitoring. 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA). :277–283.
E-learning enables the transfer of skills, knowledge, and education to a large number of recipients. The E-Learning platform has the tendency to provide face-to-face learning through a learning management system (LMS) and facilitated an improvement in traditional educational methods. The LMS saves organization time, money and easy administration. LMS also saves user time to move across the learning place by providing a web-based environment. However, a few students could be willing to exploit such a system's weakness in a bid to cheat if the conventional authentication methods are employed. In this scenario user authentication and surveillance of end user is more challenging. A system with the simultaneous authentication is put forth through multifactor adaptive authentication methods. The proposed system provides an efficient, low cost and human intervention adaptive for e-learning environment authentication and monitoring system.
Jain, Pranut, Pötter, Henrique, Lee, Adam J., Mósse, Daniel.
2020.
MAFIA: Multi-Layered Architecture For IoT-Based Authentication. 2020 Second IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :199–208.
Multi-factor authentication (MFA) systems are being deployed for user authentication in online and personal device systems, whereas physical spaces mostly rely on single-factor authentication; examples are entering offices and homes, airport security, and classroom attendance. The Internet of Things (IoT) growth and market interest has created a diverse set of low-cost and flexible sensors and actuators that can be used for MFA. However, combining multiple authentication factors in a physical space adds several challenges, such as complex deployment, reduced usability, and increased energy consumption. We introduce MAFIA (Multi-layered Architecture For IoT-based Authentication), a novel architecture for co-located user authentication composed of multiple IoT devices. In MAFIA, we improve the security of physical spaces while considering usability, privacy, energy consumption, and deployment complexity. MAFIA is composed of three layers that define specific purposes for devices, guiding developers in the authentication design while providing a clear understanding of the trade-offs for different configurations. We describe a case study for an Automated Classroom Attendance System, where we evaluated three distinct types of authentication setups and showed that the most secure setup had a greater usability penalty, while the other two setups had similar attributes in terms of security, privacy, complexity, and usability but varied highly in their energy consumption.
dos Santos Dourado, Leonardo, Ishikawa, Edison.
2020.
Graphical Semantic Authentication. 2020 15th Iberian Conference on Information Systems and Technologies (CISTI). :1–6.
Authenticate on the system using only the authentication method based on username and password is not enough to ensure an acceptable level of information security for a critical system. It has been used in a multi factor authentication to increase the information security during the authentication process. However factors like what you have cause an inconvenience to the users, because the users during the authentication process always will need to have a device in their possession that complements the authentication process. By the other side of the biometric factor might change during the time, it needs an auxiliary device that will increase the costs and it also might be dependent from environmental conditions to work appropriately. To avoid some problems that exist in multi factor authentication, this work purposes authentication through semantic representation in OWL (web Ontology Language) tuples of recognized concepts in images as a form to increase the security in the authentication process. A proof of the concept was modeled and implemented, it has a demonstration that the robustness of this authentication system depends on the complexity of relationship in the semantic base (ontology) and in the simplicity of the relationship identified in the images.