Visible to the public Biblio

Found 113 results

Filters: Keyword is smart cities  [Clear All Filters]
2018-06-20
Deeksha, Kumar, A., Bansal, M..  2017.  A review on VANET security attacks and their countermeasure. 2017 4th International Conference on Signal Processing, Computing and Control (ISPCC). :580–585.

In the development of smart cities across the world VANET plays a vital role for optimized route between source and destination. The VANETs is based on infra-structure less network. It facilitates vehicles to give information about safety through vehicle to vehicle communication (V2V) or vehicle to infrastructure communication (V2I). In VANETs wireless communication between vehicles so attackers violate authenticity, confidentiality and privacy properties which further effect security. The VANET technology is encircled with security challenges these days. This paper presents overview on VANETs architecture, a related survey on VANET with major concern of the security issues. Further, prevention measures of those issues, and comparative analysis is done. From the survey, found out that encryption and authentication plays an important role in VANETS also some research direction defined for future work.

2018-05-30
Alamaniotis, M., Tsoukalas, L. H., Bourbakis, N..  2017.  Anticipatory Driven Nodal Electricity Load Morphing in Smart Cities Enhancing Consumption Privacy. 2017 IEEE Manchester PowerTech. :1–6.

Integration of information technologies with the current power infrastructure promises something further than a smart grid: implementation of smart cities. Power efficient cities will be a significant step toward greener cities and a cleaner environment. However, the extensive use of information technologies in smart cities comes at a cost of reduced privacy. In particular, consumers' power profiles will be accessible by third parties seeking information over consumers' personal habits. In this paper, a methodology for enhancing privacy of electricity consumption patterns is proposed and tested. The proposed method exploits digital connectivity and predictive tools offered via smart grids to morph consumption patterns by grouping consumers via an optimization scheme. To that end, load anticipation, correlation and Theil coefficients are utilized synergistically with genetic algorithms to find an optimal assembly of consumers whose aggregated pattern hides individual consumption features. Results highlight the efficiency of the proposed method in enhancing privacy in the environment of smart cities.

2018-05-16
Patra, M. K..  2017.  An architecture model for smart city using Cognitive Internet of Things (CIoT). 2017 Second International Conference on Electrical, Computer and Communication Technologies (ICECCT). :1–6.

In this paper, a distributed architecture for the implementation of smart city has been proposed to facilitate various smart features like solid waste management, efficient urban mobility and public transport, smart parking, robust IT connectivity, safety and security of citizens and a roadmap for achieving it. How massive volume of IoT data can be analyzed and a layered architecture of IoT is explained. Why data integration is important for analyzing and processing of data collected by the different smart devices like sensors, actuators and RFIDs is discussed. The wireless sensor network can be used to sense the data from various locations but there has to be more to it than stuffing sensors everywhere for everything. Why only the sensor is not sufficient for data collection and how human beings can be used to collect data is explained. There is some communication protocols between the volunteers engaged in collecting data to restrict the sharing of data and ensure that the target area is covered with minimum numbers of volunteers. Every volunteer should cover some predefined area to collect data. Then the proposed architecture model is having one central server to store all data in a centralized server. The data processing and the processing of query being made by the user is taking place in centralized server.

2018-02-21
Elsaeidy, A., Elgendi, I., Munasinghe, K. S., Sharma, D., Jamalipour, A..  2017.  A smart city cyber security platform for narrowband networks. 2017 27th International Telecommunication Networks and Applications Conference (ITNAC). :1–6.

Smart city is gaining a significant attention all around the world. Narrowband technologies would have strong impact on achieving the smart city promises to its citizens with its powerful and efficient spectrum. The expected diversity of applications, different data structures and high volume of connecting devices for smart cities increase the persistent need to apply narrowband technologies. However, narrowband technologies have recognized limitations regarding security which make them an attractive target to cyber-attacks. In this paper, a novel platform architecture to secure smart city against cyber attackers is presented. The framework is providing a threat deep learning-based model to detect attackers based on users data behavior. The proposed architecture could be considered as an attempt toward developing a universal model to identify and block Denial of Service (DoS) attackers in a real time for smart city applications.

2018-02-02
Tayeb, S., Pirouz, M., Latifi, S..  2017.  A Raspberry-Pi Prototype of Smart Transportation. 2017 25th International Conference on Systems Engineering (ICSEng). :176–182.

This paper proposes a prototype of a level 3 autonomous vehicle using Raspberry Pi, capable of detecting the nearby vehicles using an IR sensor. We make the first attempt to analyze autonomous vehicles from a microscopic level, focusing on each vehicle and their communications with the nearby vehicles and road-side units. Two sets of passive and active experiments on a pair of prototypes were run, demonstrating the interconnectivity of the developed prototype. Several sensors were incorporated into an emulation based on System-on-Chip to further demonstrate the feasibility of the proposed model.

Kim, H., Ben-Othman, J., Mokdad, L., Cho, S., Bellavista, P..  2017.  On collision-free reinforced barriers for multi domain IoT with heterogeneous UAVs. 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON). :466–471.

Thanks to advancement of vehicle technologies, Unmanned Aerial Vehicle (UAV) now widely spread over practical services and applications affecting daily life of people positively. Especially, multiple heterogeneous UAVs with different capabilities should be considered since UAVs can play an important role in Internet of Things (IoT) environment in which the heterogeneity and the multi domain of UAVs are indispensable. Also, a concept of barrier-coverage has been proved as a promising one applicable to surveillance and security. In this paper, we present collision-free reinforced barriers by heterogeneous UAVs to support multi domain. Then, we define a problem which is to minimize maximum movement of UAVs on condition that a property of collision-free among UAVs is assured while they travel from current positions to specific locations so as to form reinforced barriers within multi domain. Because the defined problem depends on how to locate UAVs on barriers, we develop a novel approach that provides a collision-free movement as well as a creation of virtual lines in multi domain. Furthermore, we address future research topics which should be handled carefully for the barrier-coverage by heterogeneous UAVs.

2017-12-28
Tang, H..  2016.  A Network IDS Model Based on Improved Artificial Immune Algorithm. 2016 International Conference on Intelligent Transportation, Big Data Smart City (ICITBS). :46–50.

The network intrusion detection problem domain is described with mathematical knowledge in this paper, and a novel IDS detection model based on immune mechanism is designed. We study the key modules of IDS system, detector tolerance module and the algorithms of IDS detection intensively. Then, the continuous bit matching algorithm for computing affinity is improved by further analysis. At the same time, we adopt controllable variation and random variation, as well as dynamic demotion to improve the dynamic clonal selection algorithm. Finally the experimental simulations verify that the novel artificial immune algorithm has better detection rate and lower noise factor.

2017-11-03
Biswas, K., Muthukkumarasamy, V..  2016.  Securing Smart Cities Using Blockchain Technology. 2016 IEEE 18th International Conference on High Performance Computing and Communications; IEEE 14th International Conference on Smart City; IEEE 2nd International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :1392–1393.

A smart city uses information technology to integrate and manage physical, social, and business infrastructures in order to provide better services to its dwellers while ensuring efficient and optimal utilization of available resources. With the proliferation of technologies such as Internet of Things (IoT), cloud computing, and interconnected networks, smart cities can deliver innovative solutions and more direct interaction and collaboration between citizens and the local government. Despite a number of potential benefits, digital disruption poses many challenges related to information security and privacy. This paper proposes a security framework that integrates the blockchain technology with smart devices to provide a secure communication platform in a smart city.

2017-10-10
Su, Qiankun, Jaffres-Runser, Katia, Jakllari, Gentian, Poulliat, Charly.  2016.  An Efficient Content Delivery Infrastructure Leveraging the Public Transportation Network. Proceedings of the 19th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems. :338–347.

With the world population becoming increasingly urban and the multiplication of mega cities, urban leaders have responded with plans calling for so called smart cities relying on instantaneous access to information using mobile devices for an intelligent management of resources. Coupled with the advent of the smartphone as the main platform for accessing the Internet, this has created the conditions for the looming wireless bandwidth crunch. This paper presents a content delivery infrastructure relying on off-the-shelf technology and the public transportation network (PTN) aimed at relieving the wireless bandwidth crunch in urban centers. Our solution proposes installing WiFi access points on selected public bus stations and buses and using the latter as data mules, creating a delay tolerant network capable of carrying content users can access while using the public transportation. Building such an infrastructure poses several challenges, including congestion points in major hubs and the cost of additional hardware necessary for secure communications. To address these challenges we propose a 3-Tier architecture that guarantees end-to-end delivery and minimizes hardware cost. Trace-based simulations from three major European cities of Paris, Helsinki and Toulouse demonstrate the viability of our design choices. In particular, the 3-Tier architecture is shown to guarantee end-to-end connectivity and reduce the deployment cost by several times while delivering at least as many packets as a baseline architecture.

2017-08-02
Li, Zhen, Liao, Qi.  2016.  An Economic Alternative to Improve Cybersecurity of E-government and Smart Cities. Proceedings of the 17th International Digital Government Research Conference on Digital Government Research. :455–464.

While the rapid progress in smart city technologies are changing cities and the lifestyle of the people, there are increasingly enormous challenges in terms of the safety and security of smart cities. The potential vulnerabilities of e-government products and imminent attacks on smart city infrastructure and services will have catastrophic consequences on the governments and can cause substantial economic and noneconomic losses, even chaos, to the cities and their residents. This paper aims to explore alternative economic solutions ranging from incentive mechanisms to market-based solutions to motivate smart city product vendors, governments, and vulnerability researchers and finders to improve the cybersecurity of smart cities.

2017-07-24
Karasevich, Aleksandr M., Tutnov, Igor A., Baryshev, Gennady K..  2016.  The Prospects of Application of Information Technologies and the Principles of Intelligent Automated Systems to Manage the Security Status of Objects of Energy Supply of Smart Cities. Proceedings of the International Conference on Electronic Governance and Open Society: Challenges in Eurasia. :9–14.

The paper focuses on one of the methods of designing a highly-automated hardware-software complex aimed at controlling the security of power grids and units that support both central heating and power systems of smart cities. We understand this condition as a situation when any energy consumers of smart cities will be provided with necessary for their living amounts of energy and fuel at any time, including possible periods of techno genic and natural hazards. Two main scientific principles lie in the base of the approach introduced. The first one is diversification of risks of energy security of smart cities by rational choosing the different energy generation sources ratio for fuel-energy balance of a smart city, including large fuel electric power plants and small power autonomous generators. For example, they can be wind energy machinery of sun collectors, heat pipes, etc. The second principle is energy efficiency and energy saving of smart cities. In our case this principle is realized by the high level of automation of monitoring and operation of security status of energy systems and complexes that provide the consumers of smart cities with heat, hot water and electricity, as well as by preventive alert of possible emergencies and high reliability of functioning of all energy facilities. We formulate the main principle governing the construction of a smart hardware-software complex used to maintain a highly-automated control over risks connected with functioning of both power sources and transmission grids. This principle is for open block architecture, including highly autonomous block-modules of primary registration of measuring information, data analysis and systems of automated operation. It also describes general IT-tools used to control the risks of supplying smart cities with energy and shows the structure of a highly-automated system designed to select technological and managerial solutions for a smart city's energy supply system.

2017-05-18
Banerjee, Suman.  2016.  Edge Computing in the Extreme and Its Applications. Proceedings of the Eighth Wireless of the Students, by the Students, and for the Students Workshop. :2–2.

The notion of edge computing introduces new computing functions away from centralized locations and closer to the network edge and thus facilitating new applications and services. This enhanced computing paradigm is provides new opportunities to applications developers, not available otherwise. In this talk, I will discuss why placing computation functions at the extreme edge of our network infrastructure, i.e., in wireless Access Points and home set-top boxes, is particularly beneficial for a large class of emerging applications. I will discuss a specific approach, called ParaDrop, to implement such edge computing functionalities, and use examples from different domains – smarter homes, sustainability, and intelligent transportation – to illustrate the new opportunities around this concept.

2015-05-05
Silva Ferraz, F., Guimaraes Ferraz, C.A..  2014.  Smart City Security Issues: Depicting Information Security Issues in the Role of an Urban Environment. Utility and Cloud Computing (UCC), 2014 IEEE/ACM 7th International Conference on. :842-847.

For the first time in the history of humanity, more them half of the population is now living in big cities. This scenario has raised concerns related systems that provide basic services to citizens. Even more, those systems has now the responsibility to empower the citizen with information and values that may aid people on daily decisions, such as related to education, transport, healthy and others. This environment creates a set of services that, interconnected, can develop a brand new range of solutions that refers to a term often called System of Systems. In this matter, focusing in a smart city, new challenges related to information security raises, those concerns may go beyond the concept of privacy issues exploring situations where the entire environment could be affected by issues different them only break the confidentiality of a data. This paper intends to discuss and propose 9 security issues that can be part of a smart city environment, and that explores more them just citizens privacy violations.