Visible to the public Biblio

Found 4254 results

Filters: Keyword is security  [Clear All Filters]
2020-10-06
Li, Yue.  2019.  Finding Concurrency Exploits on Smart Contracts. 2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE-Companion). :144—146.

Smart contracts have been widely used on Ethereum to enable business services across various application domains. However, they are prone to different forms of security attacks due to the dynamic and non-deterministic blockchain runtime environment. In this work, we highlighted a general miner-side type of exploit, called concurrency exploit, which attacks smart contracts via generating malicious transaction sequences. Moreover, we designed a systematic algorithm to automatically detect such exploits. In our preliminary evaluation, our approach managed to identify real vulnerabilities that cannot be detected by other tools in the literature.

Payne, Josh, Budhraja, Karan, Kundu, Ashish.  2019.  How Secure Is Your IoT Network? 2019 IEEE International Congress on Internet of Things (ICIOT). :181—188.

The proliferation of IoT devices in smart homes, hospitals, and enterprise networks is wide-spread and continuing to increase in a superlinear manner. The question is: how can one assess the security of an IoT network in a holistic manner? In this paper, we have explored two dimensions of security assessment- using vulnerability information and attack vectors of IoT devices and their underlying components (compositional security scores) and using SIEM logs captured from the communications and operations of such devices in a network (dynamic activity metrics). These measures are used to evaluate the security of IoT devices and the overall IoT network, demonstrating the effectiveness of attack circuits as practical tools for computing security metrics (exploitability, impact, and risk to confidentiality, integrity, and availability) of the network. We decided to approach threat modeling using attack graphs. To that end, we propose the notion of attack circuits, which are generated from input/output pairs constructed from CVEs using NLP, and an attack graph composed of these circuits. Our system provides insight into possible attack paths an adversary may utilize based on their exploitability, impact, or overall risk. We have performed experiments on IoT networks to demonstrate the efficacy of the proposed techniques.

Ur-Rehman, Attiq, Gondal, Iqbal, Kamruzzuman, Joarder, Jolfaei, Alireza.  2019.  Vulnerability Modelling for Hybrid IT Systems. 2019 IEEE International Conference on Industrial Technology (ICIT). :1186—1191.

Common vulnerability scoring system (CVSS) is an industry standard that can assess the vulnerability of nodes in traditional computer systems. The metrics computed by CVSS would determine critical nodes and attack paths. However, traditional IT security models would not fit IoT embedded networks due to distinct nature and unique characteristics of IoT systems. This paper analyses the application of CVSS for IoT embedded systems and proposes an improved vulnerability scoring system based on CVSS v3 framework. The proposed framework, named CVSSIoT, is applied to a realistic IT supply chain system and the results are compared with the actual vulnerabilities from the national vulnerability database. The comparison result validates the proposed model. CVSSIoT is not only effective, simple and capable of vulnerability evaluation for traditional IT system, but also exploits unique characteristics of IoT devices.

Dattana, Vishal, Gupta, Kishu, Kush, Ashwani.  2019.  A Probability based Model for Big Data Security in Smart City. 2019 4th MEC International Conference on Big Data and Smart City (ICBDSC). :1—6.

Smart technologies at hand have facilitated generation and collection of huge volumes of data, on daily basis. It involves highly sensitive and diverse data like personal, organisational, environment, energy, transport and economic data. Data Analytics provide solution for various issues being faced by smart cities like crisis response, disaster resilience, emergence management, smart traffic management system etc.; it requires distribution of sensitive data among various entities within or outside the smart city,. Sharing of sensitive data creates a need for efficient usage of smart city data to provide smart applications and utility to the end users in a trustworthy and safe mode. This shared sensitive data if get leaked as a consequence can cause damage and severe risk to the city's resources. Fortification of critical data from unofficial disclosure is biggest issue for success of any project. Data Leakage Detection provides a set of tools and technology that can efficiently resolves the concerns related to smart city critical data. The paper, showcase an approach to detect the leakage which is caused intentionally or unintentionally. The model represents allotment of data objects between diverse agents using Bigraph. The objective is to make critical data secure by revealing the guilty agent who caused the data leakage.

2020-10-05
Rafati, Jacob, DeGuchy, Omar, Marcia, Roummel F..  2018.  Trust-Region Minimization Algorithm for Training Responses (TRMinATR): The Rise of Machine Learning Techniques. 2018 26th European Signal Processing Conference (EUSIPCO). :2015—2019.

Deep learning is a highly effective machine learning technique for large-scale problems. The optimization of nonconvex functions in deep learning literature is typically restricted to the class of first-order algorithms. These methods rely on gradient information because of the computational complexity associated with the second derivative Hessian matrix inversion and the memory storage required in large scale data problems. The reward for using second derivative information is that the methods can result in improved convergence properties for problems typically found in a non-convex setting such as saddle points and local minima. In this paper we introduce TRMinATR - an algorithm based on the limited memory BFGS quasi-Newton method using trust region - as an alternative to gradient descent methods. TRMinATR bridges the disparity between first order methods and second order methods by continuing to use gradient information to calculate Hessian approximations. We provide empirical results on the classification task of the MNIST dataset and show robust convergence with preferred generalization characteristics.

Parvina, Hashem, Moradi, Parham, Esmaeilib, Shahrokh, Jalilic, Mahdi.  2018.  An Efficient Recommender System by Integrating Non-Negative Matrix Factorization With Trust and Distrust Relationships. 2018 IEEE Data Science Workshop (DSW). :135—139.

Matrix factorization (MF) has been proved to be an effective approach to build a successful recommender system. However, most current MF-based recommenders cannot obtain high prediction accuracy due to the sparseness of user-item matrix. Moreover, these methods suffer from the scalability issues when applying on large-scale real-world tasks. To tackle these issues, in this paper a social regularization method called TrustRSNMF is proposed that incorporates the social trust information of users in nonnegative matrix factorization framework. The proposed method integrates trust statements along with user-item ratings as an additional information source into the recommendation model to deal with the data sparsity and cold-start issues. In order to evaluate the effectiveness of the proposed method, a number of experiments are performed on two real-world datasets. The obtained results demonstrate significant improvements of the proposed method compared to state-of-the-art recommendation methods.

Lowney, M. Phil, Liu, Hong, Chabot, Eugene.  2018.  Trust Management in Underwater Acoustic MANETs based on Cloud Theory using Multi-Parameter Metrics. 2018 International Carnahan Conference on Security Technology (ICCST). :1—5.

With wide applications like surveillance and imaging, securing underwater acoustic Mobile Ad-hoc NETworks (MANET) becomes a double-edged sword for oceanographic operations. Underwater acoustic MANET inherits vulnerabilities from 802.11-based MANET which renders traditional cryptographic approaches defenseless. A Trust Management Framework (TMF), allowing maintained confidence among participating nodes with metrics built from their communication activities, promises secure, efficient and reliable access to terrestrial MANETs. TMF cannot be directly applied to the underwater environment due to marine characteristics that make it difficult to differentiate natural turbulence from intentional misbehavior. This work proposes a trust model to defend underwater acoustic MANETs against attacks using a machine learning method with carefully chosen communication metrics, and a cloud model to address the uncertainty of trust in harsh underwater environments. By integrating the trust framework of communication with the cloud model to combat two kinds of uncertainties: fuzziness and randomness, trust management is greatly improved for underwater acoustic MANETs.

Ahmed, Abdelmuttlib Ibrahim Abdalla, Khan, Suleman, Gani, Abdullah, Hamid, Siti Hafizah Ab, Guizani, Mohsen.  2018.  Entropy-based Fuzzy AHP Model for Trustworthy Service Provider Selection in Internet of Things. 2018 IEEE 43rd Conference on Local Computer Networks (LCN). :606—613.

Nowadays, trust and reputation models are used to build a wide range of trust-based security mechanisms and trust-based service management applications on the Internet of Things (IoT). Considering trust as a single unit can result in missing important and significant factors. We split trust into its building-blocks, then we sort and assign weight to these building-blocks (trust metrics) on the basis of its priorities for the transaction context of a particular goal. To perform these processes, we consider trust as a multi-criteria decision-making problem, where a set of trust worthiness metrics represent the decision criteria. We introduce Entropy-based fuzzy analytic hierarchy process (EFAHP) as a trust model for selecting a trustworthy service provider, since the sense of decision making regarding multi-metrics trust is structural. EFAHP gives 1) fuzziness, which fits the vagueness, uncertainty, and subjectivity of trust attributes; 2) AHP, which is a systematic way for making decisions in complex multi-criteria decision making; and 3) entropy concept, which is utilized to calculate the aggregate weights for each service provider. We present a numerical illustration in trust-based Service Oriented Architecture in the IoT (SOA-IoT) to demonstrate the service provider selection using the EFAHP Model in assessing and aggregating the trust scores.

Mitra, Aritra, Abbas, Waseem, Sundaram, Shreyas.  2018.  On the Impact of Trusted Nodes in Resilient Distributed State Estimation of LTI Systems. 2018 IEEE Conference on Decision and Control (CDC). :4547—4552.

We address the problem of distributed state estimation of a linear dynamical process in an attack-prone environment. A network of sensors, some of which can be compromised by adversaries, aim to estimate the state of the process. In this context, we investigate the impact of making a small subset of the nodes immune to attacks, or “trusted”. Given a set of trusted nodes, we identify separate necessary and sufficient conditions for resilient distributed state estimation. We use such conditions to illustrate how even a small trusted set can achieve a desired degree of robustness (where the robustness metric is specific to the problem under consideration) that could otherwise only be achieved via additional measurement and communication-link augmentation. We then establish that, unfortunately, the problem of selecting trusted nodes is NP-hard. Finally, we develop an attack-resilient, provably-correct distributed state estimation algorithm that appropriately leverages the presence of the trusted nodes.

Kang, Anqi.  2018.  Collaborative Filtering Algorithm Based on Trust and Information Entropy. 2018 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS). 3:262—266.

In order to improve the accuracy of similarity, an improved collaborative filtering algorithm based on trust and information entropy is proposed in this paper. Firstly, the direct trust between the users is determined by the user's rating to explore the potential trust relationship of the users. The time decay function is introduced to realize the dynamic portrayal of the user's interest decays over time. Secondly, the direct trust and the indirect trust are combined to obtain the overall trust which is weighted with the Pearson similarity to obtain the trust similarity. Then, the information entropy theory is introduced to calculate the similarity based on weighted information entropy. At last, the trust similarity and the similarity based on weighted information entropy are weighted to obtain the similarity combing trust and information entropy which is used to predicted the rating of the target user and create the recommendation. The simulation shows that the improved algorithm has a higher accuracy of recommendation and can provide more accurate and reliable recommendation service.

Abusitta, Adel, Bellaiche, Martine, Dagenais, Michel.  2018.  A trust-based game theoretical model for cooperative intrusion detection in multi-cloud environments. 2018 21st Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN). :1—8.

Cloud systems are becoming more complex and vulnerable to attacks. Cyber attacks are also becoming more sophisticated and harder to detect. Therefore, it is increasingly difficult for a single cloud-based intrusion detection system (IDS) to detect all attacks, because of limited and incomplete knowledge about attacks. The recent researches in cyber-security have shown that a co-operation among IDSs can bring higher detection accuracy in such complex computer systems. Through collaboration, a cloud-based IDS can consult other IDSs about suspicious intrusions and increase the decision accuracy. The problem of existing cooperative IDS approaches is that they overlook having untrusted (malicious or not) IDSs that may negatively effect the decision about suspicious intrusions in the cloud. Moreover, they rely on a centralized architecture in which a central agent regulates the cooperation, which contradicts the distributed nature of the cloud. In this paper, we propose a framework that enables IDSs to distributively form trustworthy IDSs communities. We devise a novel decentralized algorithm, based on coalitional game theory, that allows a set of cloud-based IDSs to cooperatively set up their coalition in such a way to make their individual detection accuracy increase, even in the presence of untrusted IDSs.

Yu, Zihuan.  2018.  Research on Cloud Computing Security Evaluation Model Based on Trust Management. 2018 IEEE 4th International Conference on Computer and Communications (ICCC). :1934—1937.

At present, cloud computing technology has made outstanding contributions to the Internet in data unification and sharing applications. However, the problem of information security in cloud computing environment has to be paid attention to and effective measures have to be taken to solve it. In order to control the data security under cloud services, the DS evidence theory method is introduced. The trust management mechanism is established from the source of big data, and a cloud computing security assessment model is constructed to achieve the quantifiable analysis purpose of cloud computing security assessment. Through the simulation, the innovative way of quantifying the confidence criterion through big data trust management and DS evidence theory not only regulates the data credible quantification mechanism under cloud computing, but also improves the effectiveness of cloud computing security assessment, providing a friendly service support platform for subsequent cloud computing service.

Xue, Baoze, Shen, Pubing, Wu, Bo, Wang, Xiaoting, Chen, Shuwen.  2019.  Research on Security Protection of Network Based on Address Layout Randomization from the Perspective of Attackers. 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). :1475–1478.
At present, the network architecture is based on the TCP/IP protocol and node communications are achieved by the IP address and identifier of the node. The IP address in the network remains basically unchanged, so it is more likely to be attacked by network intruder. To this end, it is important to make periodic dynamic hopping in a specific address space possible, so that an intruder fails to obtain the internal network address and grid topological structure in real time and to continue to perform infiltration by the building of a new address space layout randomization system on the basis of SDN from the perspective of an attacker.
Zhang, Jianwei, Du, Chunfeng, Cai, Zengyu, Wu, Zuodong, Wang, Wenqian.  2019.  Research on Node Routing Security Scheme Based on Dynamic Reputation Value in Content Centric Networks. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :560–564.
As a new generation of network architecture with subversive changes to traditional IP networks, Content Centric Networks (CCN) has attracted widespread attention from domestic and foreign scholars for its efficient content distribution, multi-path and secure routing features. The design architecture of CCN network has many advantages. However, it is also easily used illegally, which brings certain security problems. For example, objectified network resources which include requesters, publishers, content and node routes, are faced with many security threats, such as privacy attribute disclosure, privacy detection, content information disclosure, and spoofing and denial of service attacks. A node routing security scheme based on dynamic reputation value is proposed for the security problem of node routing. It is convenient for detecting node routing attacks and defending in time. And it could provide security for the Content Centric Networks node routing without affecting the node routing advantages and normal user requests.
Scott-Hayward, Sandra, Arumugam, Thianantha.  2018.  OFMTL-SEC: State-based Security for Software Defined Networks. 2018 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN). :1–7.
Dynamic network security services have been proposed exploiting the benefits of Software Defined Networking (SDN) and Network Functions Virtualization (NFV) technologies. However, many of these services rely on controller interaction, which presents a performance and scalability challenge, and a threat vector. To overcome the performance issue, stateful data-plane designs have been proposed. Unfortunately, these solutions do not offer protection from attacks that exploit the SDN implementation of network functions such as topology and path update, or services such as the Address Resolution Protocol (ARP). In this work, we propose state-based SDN security protection mechanisms. Our stateful security data plane solution, OFMTL-SEC, is designed to provide protection against attacks on SDN and traditional network services. Specifically, we present a novel data plane protection against configuration-based attacks in SDN and against ARP spoofing. OFMTL-SEC is compared with the state-of-the-art solutions and offers increased security to SDNs with negligible performance impact.
Zhou, Ziqiang, Sun, Changhua, Lu, Jiazhong, Lv, Fengmao.  2018.  Research and Implementation of Mobile Application Security Detection Combining Static and Dynamic. 2018 10th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). :243–247.
With the popularity of the Internet and mobile intelligent terminals, the number of mobile applications is exploding. Mobile intelligent terminals trend to be the mainstream way of people's work and daily life online in place of PC terminals. Mobile application system brings some security problems inevitably while it provides convenience for people, and becomes a main target of hackers. Therefore, it is imminent to strengthen the security detection of mobile applications. This paper divides mobile application security detection into client security detection and server security detection. We propose a combining static and dynamic security detection method to detect client-side. We provide a method to get network information of server by capturing and analyzing mobile application traffic, and propose a fuzzy testing method based on HTTP protocol to detect server-side security vulnerabilities. Finally, on the basis of this, an automated platform for security detection of mobile application system is developed. Experiments show that the platform can detect the vulnerabilities of mobile application client and server effectively, and realize the automation of mobile application security detection. It can also reduce the cost of mobile security detection and enhance the security of mobile applications.
Adebayo, Abdulhamid, Rawat, Danda B., Garuba, Moses, Njilla, Laurent.  2018.  Aggregated-Query-as-a-Secure-Service for RF Spectrum Database-Driven Opportunistic Wireless Communications. 2018 IEEE Conference on Communications and Network Security (CNS). :1–2.
The US Federal Communications Commission (FCC) has recently mandated the database-driven dynamic spectrum access where unlicensed secondary users search for idle bands and use them opportunistically. The database-driven dynamic spectrum access approach is regarded for minimizing any harmful interference to licensed primary users caused by RF channel sensing uncertainties. However, when several secondary users (or several malicious users) query the RF spectrum database at the same time, spectrum server could experience denial of service (DoS) attack. In this paper, we investigate the Aggregated-Query-as-a-Secure-Service (AQaaSS) for querying RF spectrum database by secondary users for opportunistic wireless communications where selected number of secondary users aka grid leaders, query the database on behalf of all other secondary users, aka grid followers and relay the idle channel information to grid followers. Furthermore, the grid leaders are selected based on their both reputation or trust level and location in the network for the integrity of the information that grid followers receive. Grid followers also use the weighted majority voting to filter out comprised information about the idle channels. The performance of the proposed approach is evaluated using numerical results. The proposed approach gives lower latency (or same latency) to the secondary users and lower load (or same load) to the RF spectrum database server when more number of secondary users (or less number of secondary users) query than that of the server capacity.
Wu, Songyang, Zhang, Yong, Chen, Xiao.  2018.  Security Assessment of Dynamic Networks with an Approach of Integrating Semantic Reasoning and Attack Graphs. 2018 IEEE 4th International Conference on Computer and Communications (ICCC). :1166–1174.
Because of the high-value data of an enterprise, sophisticated cyber-attacks targeted at enterprise networks have become prominent. Attack graphs are useful tools that facilitate a scalable security analysis of enterprise networks. However, the administrators face difficulties in effectively modelling security problems and making right decisions when constructing attack graphs as their risk assessment experience is often limited. In this paper, we propose an innovative method of security assessment through an ontology- and graph-based approach. An ontology is designed to represent security knowledge such as assets, vulnerabilities, attacks, countermeasures, and relationships between them in a common vocabulary. An efficient algorithm is proposed to generate an attack graph based on the inference ability of the security ontology. The proposed algorithm is evaluated with different sizes and topologies of test networks; the results show that our proposed algorithm facilitates a scalable security analysis of enterprise networks.
Zhao, Yongxin, Wu, Xi, Liu, Jing, Yang, Yilong.  2018.  Formal Modeling and Security Analysis for OpenFlow-Based Networks. 2018 23rd International Conference on Engineering of Complex Computer Systems (ICECCS). :201–204.
We present a formal OpenFlow-based network programming language (OF) including various flow rules, which can not only describe the behaviors of an individual switch, but also support to model a network of switches connected in the point-to-point topology. Besides, a topology-oriented operational semantics of the proposed language is explored to specify how the packet is processed and delivered in the OpenFlow-based networks. Based on the formal framework, we also propose an approach to detect potential security threats caused by the conflict of dynamic flow rules imposed by dynamic OpenFlow applications.
Hong, Jin Bum, Yusuf, Simon Enoch, Kim, Dong Seong, Khan, Khaled MD.  2018.  Stateless Security Risk Assessment for Dynamic Networks. 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W). :65–66.
Emerging networking technologies, such as cloud and Software Defined Networking, provide flexibility, elasticity and functionalities to change the network configurations over time. However, changes also impose unpredictable security postures at different times, creating difficulties to the security assessment of the network. To address this issue, we propose a stateless security risk assessment, which combines the security posture of network states at different times to provide an overall security overview. This paper describes the methodologies of the stateless security risk assessment. Our approach is applicable to any emerging networking technologies with dynamic changes.
McDermott, Thomas Allen.  2019.  A Rigorous System Engineering Process for Resilient Cyber-Physical Systems Design. 2019 International Symposium on Systems Engineering (ISSE). :1–8.
System assurance is the justified confidence that a system functions as intended and is free of exploitable vulnerabilities, either intentionally or unintentionally designed or inserted as part of the system at any time during the life cycle. The computation and communication backbone of Internet of Things (IoT) devices and other cyber-physical systems (CPS) makes them vulnerable to classes of threats previously not relevant for many physical control and computational systems. The design of resilient IoT systems encompasses vulnerabilities to adversarial disruption (Security), behavior in an operational environments (Function), and increasing interdependencies (Connectedness). System assurance can be met only through a comprehensive and aggressive systems engineering approach. Engineering methods to "design in" security have been explored in the United States through two separate research programs, one through the Systems Engineering Research Center (SERC) and one through the Defense Advanced Research Process Agency (DARPA). This paper integrates these two programs and discusses how assurance practices can be improved using new system engineering and system design strategies that rely on both functional and formal design methods.
Fowler, Stuart, Sitnikova, Elena.  2019.  Toward a framework for assessing the cyber-worthiness of complex mission critical systems. 2019 Military Communications and Information Systems Conference (MilCIS). :1–6.
Complex military systems are typically cyber-physical systems which are the targets of high level threat actors, and must be able to operate within a highly contested cyber environment. There is an emerging need to provide a strong level of assurance against these threat actors, but the process by which this assurance can be tested and evaluated is not so clear. This paper outlines an initial framework developed through research for evaluating the cyber-worthiness of complex mission critical systems using threat models developed in SysML. The framework provides a visual model of the process by which a threat actor could attack the system. It builds on existing concepts from system safety engineering and expands on how to present the risks and mitigations in an understandable manner.
Murino, Giuseppina, Armando, Alessandro, Tacchella, Armando.  2019.  Resilience of Cyber-Physical Systems: an Experimental Appraisal of Quantitative Measures. 2019 11th International Conference on Cyber Conflict (CyCon). 900:1–19.
Cyber-Physical Systems (CPSs) interconnect the physical world with digital computers and networks in order to automate production and distribution processes. Nowadays, most CPSs do not work in isolation, but their digital part is connected to the Internet in order to enable remote monitoring, control and configuration. Such a connection may offer entry-points enabling attackers to gain control silently and exploit access to the physical world at the right time to cause service disruption and possibly damage to the surrounding environment. Prevention and monitoring measures can reduce the risk brought by cyber attacks, but the residual risk can still be unacceptably high in critical infrastructures or services. Resilience - i.e., the ability of a system to withstand adverse events while maintaining an acceptable functionality - is therefore a key property for such systems. In our research, we seek a model-free, quantitative, and general-purpose evaluation methodology to extract resilience indexes from, e.g., system logs and process data. While a number of resilience metrics have already been put forward, little experimental evidence is available when it comes to the cyber security of CPSs. By using the model of a real wastewater treatment plant, and simulating attacks that tamper with a critical feedback control loop, we provide a comparison between four resilience indexes selected through a thorough literature review involving over 40 papers. Our results show that the selected indexes differ in terms of behavior and sensitivity with respect to specific attacks, but they can all summarize and extract meaningful information from bulky system logs. Our evaluation includes an approach for extracting performance indicators from observed variables which does not require knowledge of system dynamics; and a discussion about combining resilience indexes into a single system-wide measure is included. 11The authors wish to thank Leonardo S.p.A. for its financial support. The research herein presented is partially supported by project NEFERIS awarded by the Italian Ministry of Defense to Leonardo S.p.A. in partnership with the University of Genoa. This work received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 830892 for project SPARTA.
2020-09-28
Liu, Kai, Zhou, Yun, Wang, Qingyong, Zhu, Xianqiang.  2019.  Vulnerability Severity Prediction With Deep Neural Network. 2019 5th International Conference on Big Data and Information Analytics (BigDIA). :114–119.
High frequency of network security incidents has also brought a lot of negative effects and even huge economic losses to countries, enterprises and individuals in recent years. Therefore, more and more attention has been paid to the problem of network security. In order to evaluate the newly included vulnerability text information accurately, and to reduce the workload of experts and the false negative rate of the traditional method. Multiple deep learning methods for vulnerability text classification evaluation are proposed in this paper. The standard Cross Site Scripting (XSS) vulnerability text data is processed first, and then classified using three kinds of deep neural networks (CNN, LSTM, TextRCNN) and one kind of traditional machine learning method (XGBoost). The dropout ratio of the optimal CNN network, the epoch of all deep neural networks and training set data were tuned via experiments to improve the fit on our target task. The results show that the deep learning methods evaluate vulnerability risk levels better, compared with traditional machine learning methods, but cost more time. We train our models in various training sets and test with the same testing set. The performance and utility of recurrent convolutional neural networks (TextRCNN) is highest in comparison to all other methods, which classification accuracy rate is 93.95%.
Ibrahim, Ahmed, El-Ramly, Mohammad, Badr, Amr.  2019.  Beware of the Vulnerability! How Vulnerable are GitHub's Most Popular PHP Applications? 2019 IEEE/ACS 16th International Conference on Computer Systems and Applications (AICCSA). :1–7.
The presence of software vulnerabilities is a serious threat to any software project. Exploiting them can compromise system availability, data integrity, and confidentiality. Unfortunately, many open source projects go for years with undetected ready-to-exploit critical vulnerabilities. In this study, we investigate the presence of software vulnerabilities in open source projects and the factors that influence this presence. We analyzed the top 100 open source PHP applications in GitHub using a static analysis vulnerability scanner to examine how common software vulnerabilities are. We also discussed which vulnerabilities are most present and what factors contribute to their presence. We found that 27% of these projects are insecure, with a median number of 3 vulnerabilities per vulnerable project. We found that the most common type is injection vulnerabilities, which made 58% of all detected vulnerabilities. Out of these, cross-site scripting (XSS) was the most common and made 43.5% of all vulnerabilities found. Statistical analysis revealed that project activities like branching, pulling, and committing have a moderate positive correlation with the number of vulnerabilities in the project. Other factors like project popularity, number of releases, and number of issues had almost no influence on the number of vulnerabilities. We recommend that open source project owners should set secure code development guidelines for their project members and establish secure code reviews as part of the project's development process.