Biblio
Modern computer peripherals are diverse in their capabilities and functionality, ranging from keyboards and printers to smartphones and external GPUs. In recent years, peripherals increasingly connect over a small number of standardized communication protocols, including USB, Bluetooth, and NFC. The host operating system is responsible for managing these devices; however, malicious peripherals can request additional functionality from the OS resulting in system compromise, or can craft data packets to exploit vulnerabilities within OS software stacks. Defenses against malicious peripherals to date only partially cover the peripheral attack surface and are limited to specific protocols (e.g., USB). In this paper, we propose Linux (e)BPF Modules (LBM), a general security framework that provides a unified API for enforcing protection against malicious peripherals within the Linux kernel. LBM leverages the eBPF packet filtering mechanism for performance and extensibility and we provide a high-level language to facilitate the development of powerful filtering functionality. We demonstrate how LBM can provide host protection against malicious USB, Bluetooth, and NFC devices; we also instantiate and unify existing defenses under the LBM framework. Our evaluation shows that the overhead introduced by LBM is within 1 μs per packet in most cases, application and system overhead is negligible, and LBM outperforms other state-of-the-art solutions. To our knowledge, LBM is the first security framework designed to provide comprehensive protection against malicious peripherals within the Linux kernel.
Wireless Mesh Networks (WMN) are becoming inevitable in this world of high technology as it provides low cost access to broadband services. Moreover, the technologists are doing research to make WMN more reliable and secure. Subsequently, among wireless ad-hoc networking technologies, Bluetooth Low Energy (BLE) is gaining high degree of importance among researchers due to its easy availability in the gadgets and low power consumption. BLE started its journey from version 4.0 and announced the latest version 5 with mesh support capability. BLE being a low power and mesh supported technology is nowadays among the hot research topics for the researchers. Many of the researchers are working on BLE mesh technology to make it more efficient and smart. Apart from other variables of efficiency, like all communication networks, mesh network security is also of a great concern. In view of the aforesaid, this paper provides a comprehensive review on several works associated to the security in WMN and BLE mesh networks and the research related to the BLE security protocols. Moreover, after the detailed research on related works, this paper has discussed the pros and cons of the present developed mesh security mechanisms. Also, at the end after extracting the curx from the present research on WMN and BLE mesh security, this research study has devised some solutions as how to mitigate the BLE mesh network security lapses.
Deep machine learning techniques have shown promising results in network traffic classification, however, the robustness of these techniques under adversarial threats is still in question. Deep machine learning models are found vulnerable to small carefully crafted adversarial perturbations posing a major question on the performance of deep machine learning techniques. In this paper, we propose a black-box adversarial attack on network traffic classification. The proposed attack successfully evades deep machine learning-based classifiers which highlights the potential security threat of using deep machine learning techniques to realize autonomous networks.
Modern operating systems for personal computers (including Linux, MAC, and Windows) provide user-level APIs for an application to access the I/O paths of another application. This design facilitates information sharing between applications, enabling applications such as screenshots. However, it also enables user-level malware to log a user's keystrokes or scrape a user's screen output. In this work, we explore a design called SwitchMan to protect a user's I/O paths against user-level malware attacks. SwitchMan assigns each user with two accounts: a regular one for normal operations and a protected one for inputting and outputting sensitive data. Each user account runs under a separate virtual terminal. Malware running under a user's regular account cannot access sensitive input/output under a user's protected account. At the heart of SwitchMan lies a secure protocol that enables automatic account switching when an application requires sensitive input/output from a user. Our performance evaluation shows that SwitchMan adds acceptable performance overhead. Our security and usability analysis suggests that SwitchMan achieves a better tradeoff between security and usability than existing solutions.
This work proposes a scheme to detect, isolate and mitigate malicious disruption of electro-mechanical processes in legacy PLCs where each PLC works as a finite state machine (FSM) and goes through predefined states depending on the control flow of the programs and input-output mechanism. The scheme generates a group-signature for a particular state combining the signature shares from each of these PLCs using \$(k,\textbackslashtextbackslash l)\$-threshold signature scheme.If some of them are affected by the malicious code, signature can be verified by k out of l uncorrupted PLCs and can be used to detect the corrupted PLCs and the compromised state. We use OpenPLC software to simulate Legacy PLC system on Raspberry Pi and show İ/O\$ pin configuration attack on digital and pulse width modulation (PWM) pins. We describe the protocol using a small prototype of five instances of legacy PLCs simultaneously running on OpenPLC software. We show that when our proposed protocol is deployed, the aforementioned attacks get successfully detected and the controller takes corrective measures. This work has been developed as a part of the problem statement given in the Cyber Security Awareness Week-2017 competition.
Living in the age of digital transformation, companies and individuals are moving to public and private clouds to store and retrieve information, hence the need to store and retrieve data is exponentially increasing. Existing storage technologies such as DAS are facing a big challenge to deal with these huge amount of data. Hence, newer technologies should be adopted. Storage Area Network (SAN) is a distributed storage technology that aggregates data from several private nodes into a centralized secure place. Looking at SAN from a security perspective, clearly physical security over multiple geographical remote locations is not adequate to ensure a full security solution. A SAN security framework needs to be developed and designed. This work investigates how SAN protocols work (FC, ISCSI, FCOE). It also investigates about other storages technologies such as Network Attached Storage (NAS) and Direct Attached Storage (DAS) including different metrics such as: IOPS (input output per second), Throughput, Bandwidths, latency, cashing technologies. This research work is focusing on the security vulnerabilities in SAN listing different attacks in SAN protocols and compare it to other such as NAS and DAS. Another aspect of this work is to highlight performance factors in SAN in order to find a way to improve the performance focusing security solutions aimed to enhance the security level in SAN.
Software Defined Networking (SDN) provides new functionalities to efficiently manage the network traffic, which can be used to enhance the networking capabilities to support the growing communication demands today. But at the same time, it introduces new attack vectors that can be exploited by attackers. Hence, evaluating and selecting countermeasures to optimize the security of the SDN is of paramount importance. However, one should also take into account the trade-off between security and performance of the SDN. In this paper, we present a security optimization approach for the SDN taking into account the trade-off between security and performance. We evaluate the security of the SDN using graphical security models and metrics, and use queuing models to measure the performance of the SDN. Further, we use Genetic Algorithms, namely NSGA-II, to optimally select the countermeasure with performance and security constraints. Our experimental analysis results show that the proposed approach can efficiently compute the countermeasures that will optimize the security of the SDN while satisfying the performance constraints.
An improved algorithm of the Analytic Hierarchy Process (AHP) is proposed in this paper, which is realized by constructing an improved judgment matrix. Specifically, rough set theory is used in the algorithm to calculate the weight of the network metric data, and then the improved AHP algorithm nine-point systemic is structured, finally, an improved AHP judgment matrix is constructed. By performing an AHP operation on the improved judgment matrix, the weight of the improved network metric data can be obtained. If only the rough set theory is applied to process the network index data, the objective factors would dominate the whole process. If the improved algorithm of AHP is used to integrate the expert score into the process of measurement, then the combination of subjective factors and objective factors can be realized. Based on the aforementioned theory, a new network attack metrics system is proposed in this paper, which uses a metric structure based on "attack type-attack attribute-attack atomic operation-attack metrics", in which the metric process of attack attribute adopts AHP. The metrics of the system are comprehensive, given their judgment of frequent attacks is universal. The experiment was verified by an experiment of a common attack Smurf. The experimental results show the effectiveness and applicability of the proposed measurement system.
Continuous and adaptive learning is an effective learning approach when dealing with highly dynamic and changing scenarios, where concept drift often happens. In a continuous, stream or adaptive learning setup, new measurements arrive continuously and there are no boundaries for learning, meaning that the learning model has to decide how and when to (re)learn from these new data constantly. We address the problem of adaptive and continual learning for network security, building dynamic models to detect network attacks in real network traffic. The combination of fast and big network measurements data with the re-training paradigm of adaptive learning imposes complex challenges in terms of data processing speed, which we tackle by relying on big data platforms for parallel stream processing. We build and benchmark different adaptive learning models on top of a novel big data analytics platform for network traffic monitoring and analysis tasks, and show that high speed-up computations (as high as × 6) can be achieved by parallelizing off-the-shelf stream learning approaches.
This paper introduces a secured and distributed Big Data storage scheme with multiple authorizations. It divides the Big Data into small chunks and distributes them through multiple Cloud locations. The Shamir's Secret Sharing and Secure Hash Algorithm are employed to provide the security and authenticity of this work. The proposed methodology consists of two phases: the distribution and retrieving phases. The distribution phase comprises three operations of dividing, encrypting, and distribution. The retrieving phase performs collecting and verifying operations. To increase the security level, the encryption key is divided into secret shares using Shamir's Algorithm. Moreover, the Secure Hash Algorithm is used to verify the Big Data after retrieving from the Cloud. The experimental results show that the proposed design can reconstruct a distributed Big Data with good speed while conserving the security and authenticity properties.
What does it mean to trust, or not trust, an augmented reality system? Froma computer security point of view, trust in augmented reality represents a real threat to real people. The fact that augmented reality allows the programmer to tinker with the user's senses creates many opportunities for malfeasance. It might be natural to think that if we warn users to be careful it will lower their trust in the system, greatly reducing risk.
The task of attack attribution, i.e., identifying the entity responsible for an attack, is complicated and usually requires the involvement of an experienced security expert. Prior attempts to automate attack attribution apply various machine learning techniques on features extracted from the malware's code and behavior in order to identify other similar malware whose authors are known. However, the same malware can be reused by multiple actors, and the actor who performed an attack using a malware might differ from the malware's author. Moreover, information collected during an incident may contain many clues about the identity of the attacker in addition to the malware used. In this paper, we propose a method of attack attribution based on textual analysis of threat intelligence reports, using state of the art algorithms and models from the fields of machine learning and natural language processing (NLP). We have developed a new text representation algorithm which captures the context of the words and requires minimal feature engineering. Our approach relies on vector space representation of incident reports derived from a small collection of labeled reports and a large corpus of general security literature. Both datasets have been made available to the research community. Experimental results show that the proposed representation can attribute attacks more accurately than the baselines' representations. In addition, we show how the proposed approach can be used to identify novel previously unseen threat actors and identify similarities between known threat actors.
Due to safety concerns and legislation implemented by various governments, the maritime sector adopted Automatic Identification System (AIS). Whilst governments and state agencies have an increasing reliance on AIS data, the underlying technology can be found to be fundamentally insecure. This study identifies and describes a number of potential attack vectors and suggests conceptual countermeasures to mitigate such attacks. With interception by Navy and Coast Guard as well as marine navigation and obstacle avoidance, the vulnerabilities within AIS call into question the multiple deployed overlapping AIS networks, and what the future holds for the protocol.
The quantity of Internet of Things (IoT) devices in the marketplace and lack of security is staggering. The interconnectedness of IoT devices has increased the attack surface for hackers. "White Worm" technology has the potential to combat infiltrating malware. Before white worm technology becomes viable, its capabilities must be constrained to specific devices and limited to non-harmful actions. This paper addresses the current problem, international research, and the conflicting interest of individuals, businesses, and governments regarding white worm technology. Proposed is a new perspective on utilizing white worm technology to protect the vulnerability of IoT devices, while overcoming its challenges.