Biblio
Aiming at the operation characteristics of power industry control system, this paper deeply analyses the attack mechanism and characteristics of power industry control system intrusion. On the basis of classifying and sorting out the attack characteristics of power industrial control system, this paper also attaches importance to break the basic theory and consequential technologies of industrial control network space security, and constructs the network intrusion as well as attack model of power industrial control system to realize the precise characterization of attackers' attack behavior, which provides a theoretical model for the analysis and early warning of attack behavior analysis of power industrial control systems.
The borderless, dynamic, high dimensional and virtual natures of cyberspace have brought unprecedented hard situation for defenders. To fight uncertain challenges in versatile cyberspace, a security framework based on the cloud computing platform that facilitates containerization technology to create a security capability pool to generate and distribute security payload according to system needs. Composed by four subsystems of the security decision center, the image and container library, the decision rule base and the security event database, this framework distills structured knowledge from aggregated security events and then deliver security load to the managed network or terminal nodes directed by the decision center. By introducing such unified and standardized top-level security framework that is decomposable, combinable and configurable in a service-oriented manner, it could offer flexibility and effectiveness in reconstructing security resource allocation and usage to reach higher efficiency.
Industrial Internet of Things (IIoT) is a fusion of industrial automation systems and IoT systems. It features comprehensive sensing, interconnected transmission, intelligent processing, self-organization and self-maintenance. Its applications span intelligent transportation, smart factories, and intelligence. Many areas such as power grid and intelligent environment detection. With the widespread application of IIoT technology, the cyber security threats to industrial IoT systems are increasing day by day, and information security issues have become a major challenge in the development process. In order to protect the industrial IoT system from network attacks, this paper aims to study the industrial IoT information security protection technology, and the typical architecture of industrial Internet of things system, and analyzes the network security threats faced by industrial Internet of things system according to the different levels of the architecture, and designs the security protection strategies applied to different levels of structures based on the specific means of network attack.
Multicast distribution employs the model of many-to-many so that it is a more efficient way of data delivery compared to traditional one-to-one unicast distribution, which can benefit many applications such as media streaming. However, the lack of security features in its nature makes multicast technology much less popular in an open environment such as the Internet. Internet Service Providers (ISPs) take advantage of IP multicast technology's high efficiency of data delivery to provide Internet Protocol Television (IPTV) to their users. But without the full control on their networks, ISPs cannot collect revenue for the services they provide. Secure Internet Group Management Protocol (SIGMP), an extension of Internet Group Management Protocol (IGMP), and Group Security Association Management Protocol (GSAM), have been proposed to enforce receiver access control at the network level of IP multicast. In this paper, we analyze operational details and issues of both SIGMP and GSAM. An examination of the performance of both protocols is also conducted.
Often, analysts have to face a challenging situation when formally verifying the implementation of a security protocol: they need to build a model of the protocol from only poorly or not documented code, and with little or no help from the developers to better understand it. Security protocols implementations frequently use services provided by libraries coded in the C programming language; automatic tools for codelevel reverse engineering offer good support to comprehend the behavior of code in object-oriented languages but are ineffective to deal with libraries in C. Here we propose a systematic, yet human-dependent approach, which combines the capabilities of state-of-the-art tools in order to help the analyst to retrieve, step by step, the security protocol specifications from a library in C. Those specifications can then be used to create the formal model needed to carry out the analysis.
Mutriku wave farm is the first commercial plant all around the world. Since July 2011 it has been continuously selling electricity to the grid. It operates with the OWC technology and has 14 operating Wells-type turbines. In the plant there is a SCADA data recording system that collects the most important parameters of the turbines; among them, the pressure in the inlet chamber, the position of the security valve (from fully open to fully closed) and the generated power in the last 5 minutes. There is also an electricity meter which provides information about the amount of electric energy sold to the grid. The 2014 winter (January, February and March), and especially the first fortnight of February, was a stormy winter with rough sea state conditions. This was reflected both in the performance of the turbines (high pressure values, up to 9234.2 Pa; low opening degrees of the security valve, down to 49.4°; and high power generation of about 7681.6 W, all these data being average values) and in the calculated capacity factor (CF = 0.265 in winter and CF = 0.294 in February 2014). This capacity factor is a good tool for the comparison of different WEC technologies or different locations and shows an important seasonal behavior.
Physical Unclonable Functions (PUFs) are vulnerable to various modelling attacks. The chaotic behaviour of oscillating systems can be leveraged to improve their security against these attacks. We have integrated an Arbiter PUF implemented on a FPGA with Chua's oscillator circuit to obtain robust final responses. These responses are tested against conventional Machine Learning and Deep Learning attacks for verifying security of the design. It has been found that such a design is robust with prediction accuracy of nearly 50%. Moreover, the quality of the PUF architecture is evaluated for uniformity and uniqueness metrics and Monte Carlo analysis at varying temperatures is performed for determining reliability.
This paper analyzes security problems of modern computer systems caused by vulnerabilities in their operating systems (OSs). Our scrutiny of widely used enterprise OSs focuses on their vulnerabilities by examining the statistical data available on how vulnerabilities in these systems are disclosed and eliminated, and by assessing their criticality. This is done by using statistics from both the National Vulnerabilities Database and the Common Vulnerabilities and Exposures System. The specific technical areas the paper covers are the quantitative assessment of forever-day vulnerabilities, estimation of days-of-grey-risk, the analysis of the vulnerabilities severity and their distributions by attack vector and impact on security properties. In addition, the study aims to explore those vulnerabilities that have been found across a diverse range of OSs. This leads us to analyzing how different intrusion-tolerant architectures deploying the OS diversity impact availability, integrity, and confidentiality.
Today's virtual switches not only support legacy network protocols and standard network management interfaces, but also become adapted to OpenFlow as a prevailing communication protocol. This makes them a core networking component of today's virtualized infrastructures which are able to handle sophisticated networking scenarios in a flexible and software-defined manner. At the same time, these virtual SDN data planes become high-value targets because a compromised switch is hard to detect while it affects all components of a virtualized/SDN-based environment.Most of the well known programmable virtual switches in the market are open source which makes them cost-effective and yet highly configurable options in any network infrastructure deployment. However, this comes at a cost which needs to be addressed. Accordingly, this paper raises an alarm on how attackers may leverage white box analysis of software switch functionalities to lunch effective low profile attacks against it. In particular, we practically present how attackers can systematically take advantage of static and dynamic code analysis techniques to lunch a low rate saturation attack on virtual SDN data plane in a cloud data center.