Visible to the public Biblio

Filters: Keyword is post-silicon validation  [Clear All Filters]
2022-03-01
Raja, Subashree, Bhamidipati, Padmaja, Liu, Xiaobang, Vemuri, Ranga.  2021.  Security Capsules: An Architecture for Post-Silicon Security Assertion Validation for Systems-on-Chip. 2021 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). :248–253.
In this paper, we propose a methodology for post-silicon validation through the evaluation of security assertions for systems-on-chip (SoC). The methodology is centered around a security architecture in which a "security capsule" is attached to each IP core in the SoC. The security capsule consists of a set of on-line and off-line assertion monitors, a dynamic trace-buffer to trace selected groups of signals, and a dynamic trace controller. The architecture is supported by a trace signal selection and grouping algorithm and a dynamic signal tracing method to evaluate the off-chip monitors. This paper presents the security capsule architecture, the signal selection and grouping algorithm, and the run-time signal tracing method. Results of using the methodology on two SoC architectures based on the OpenRISC-1200 and RISC-V processors are presented.
2020-10-30
Basu, Kanad, Elnaggar, Rana, Chakrabarty, Krishnendu, Karri, Ramesh.  2019.  PREEMPT: PReempting Malware by Examining Embedded Processor Traces. 2019 56th ACM/IEEE Design Automation Conference (DAC). :1—6.

Anti-virus software (AVS) tools are used to detect Malware in a system. However, software-based AVS are vulnerable to attacks. A malicious entity can exploit these vulnerabilities to subvert the AVS. Recently, hardware components such as Hardware Performance Counters (HPC) have been used for Malware detection. In this paper, we propose PREEMPT, a zero overhead, high-accuracy and low-latency technique to detect Malware by re-purposing the embedded trace buffer (ETB), a debug hardware component available in most modern processors. The ETB is used for post-silicon validation and debug and allows us to control and monitor the internal activities of a chip, beyond what is provided by the Input/Output pins. PREEMPT combines these hardware-level observations with machine learning-based classifiers to preempt Malware before it can cause damage. There are many benefits of re-using the ETB for Malware detection. It is difficult to hack into hardware compared to software, and hence, PREEMPT is more robust against attacks than AVS. PREEMPT does not incur performance penalties. Finally, PREEMPT has a high True Positive value of 94% and maintains a low False Positive value of 2%.