Visible to the public Biblio

Filters: Keyword is cloud environment  [Clear All Filters]
2022-05-12
Li, Fulin, Ji, Huifang, Zhou, Hongwei, Zhang, Chang.  2021.  A Dynamic and Secure Migration Method of Cryptographic Service Virtual Machine for Cloud Environment. 2021 7th International Conference on Computer and Communications (ICCC). :583–588.
In order to improve the continuity of cryptographic services and ensure the quality of services in the cloud environment, a dynamic migration framework of cryptographic service virtual machines based on the network shared storage system is proposed. Based on the study of the security threats in the migration process, a dynamic migration attack model is established, and the security requirement of dynamic migration is analyzed. It designs and implements the dynamic security migration management software, which includes a dynamic migration security enhancement module based on the Libvirt API, role-based access control policy, and transmission channel protection module. A cryptographic service virtual machine migration environment is built, and the designed management software and security mechanism are verified and tested. The experimental results show that the method proposed in the paper can effectively improve the security of cryptographic service virtual machine migration.
2021-07-07
Mengli, Zhou, Fucai, Chen, Wenyan, Liu, Hao, Liang.  2020.  Negative Feedback Dynamic Scheduling Algorithm based on Mimic Defense in Cloud Environment. 2020 IEEE 6th International Conference on Computer and Communications (ICCC). :2265–2270.
The virtualization technology in cloud environment brings some data and privacy security issues to users. Aiming at the problems of virtual machines singleness, homogeneity and static state in cloud environment, a negative feedback dynamic scheduling algorithm is proposed. This algorithm is based on mimic defense and creates multiple virtual machines to complete user request services together through negative feedback control mechanism which can achieve real-time monitor of the running state of virtual machines. When virtual machines state is found to be inconsistent, this algorithm will dynamically change its execution environment, resulting in the attacker's information collection and vulnerability exploitation process being disrupting. Experiments show that the algorithm can better solve security threats caused by the singleness, homogeneity and static state of virtual machines in the cloud, and improve security and reliability of cloud users.
2021-02-01
Sendhil, R., Amuthan, A..  2020.  Privacy Preserving Data Aggregation in Fog Computing using Homomorphic Encryption: An Analysis. 2020 International Conference on Computer Communication and Informatics (ICCCI). :1–5.
In recent days the attention of the researchers has been grabbed by the advent of fog computing which is found to be a conservatory of cloud computing. The fog computing is found to be more advantageous and it solves mighty issues of the cloud namely higher delay and also no proper mobility awareness and location related awareness are found in the cloud environment. The IoT devices are connected to the fog nodes which support the cloud services to accumulate and process a component of data. The presence of Fog nodes not only reduces the demands of processing data, but it had improved the quality of service in real time scenarios. Nevertheless the fog node endures from challenges of false data injection, privacy violation in IoT devices and violating integrity of data. This paper is going to address the key issues related to homomorphic encryption algorithms which is used by various researchers for providing data integrity and authenticity of the devices with their merits and demerits.
2021-01-25
Arthy, R., Daniel, E., Maran, T. G., Praveen, M..  2020.  A Hybrid Secure Keyword Search Scheme in Encrypted Graph for Social Media Database. 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC). :1000–1004.

Privacy preservation is a challenging task with the huge amount of data that are available in social media. The data those are stored in the distributed environment or in cloud environment need to ensure confidentiality to data. In addition, representing the voluminous data is graph will be convenient to perform keyword search. The proposed work initially reads the data corresponding to social media and converts that into a graph. In order to prevent the data from the active attacks Advanced Encryption Standard algorithm is used to perform graph encryption. Later, search operation is done using two algorithms: kNK keyword search algorithm and top k nearest keyword search algorithm. The first scheme is used to fetch all the data corresponding to the keyword. The second scheme is used to fetch the nearest neighbor. This scheme increases the efficiency of the search process. Here shortest path algorithm is used to find the minimum distance. Now, based on the minimum value the results are produced. The proposed algorithm shows high performance for graph generation and searching and moderate performance for graph encryption.

Abbas, M. S., Mahdi, S. S., Hussien, S. A..  2020.  Security Improvement of Cloud Data Using Hybrid Cryptography and Steganography. 2020 International Conference on Computer Science and Software Engineering (CSASE). :123–127.
One of the significant advancements in information technology is Cloud computing, but the security issue of data storage is a big problem in the cloud environment. That is why a system is proposed in this paper for improving the security of cloud data using encryption, information concealment, and hashing functions. In the data encryption phase, we implemented hybrid encryption using the algorithm of AES symmetric encryption and the algorithm of RSA asymmetric encryption. Next, the encrypted data will be hidden in an image using LSB algorithm. In the data validation phase, we use the SHA hashing algorithm. Also, in our suggestion, we compress the data using the LZW algorithm before hiding it in the image. Thus, it allows hiding as much data as possible. By using information concealment technology and mixed encryption, we can achieve strong data security. In this paper, PSNR and SSIM values were calculated in addition to the graph to evaluate the image masking performance before and after applying the compression process. The results showed that PSNR values of stego-image are better for compressed data compared to data before compression.
2020-12-28
Riaz, S., Khan, A. H., Haroon, M., Latif, S., Bhatti, S..  2020.  Big Data Security and Privacy: Current Challenges and Future Research perspective in Cloud Environment. 2020 International Conference on Information Management and Technology (ICIMTech). :977—982.

Cloud computing is an Internet-based technology that emerging rapidly in the last few years due to popular and demanded services required by various institutions, organizations, and individuals. structured, unstructured, semistructured data is transfer at a record pace on to the cloud server. These institutions, businesses, and organizations are shifting more and more increasing workloads on cloud server, due to high cost, space and maintenance issues from big data, cloud computing will become a potential choice for the storage of data. In Cloud Environment, It is obvious that data is not secure completely yet from inside and outside attacks and intrusions because cloud servers are under the control of a third party. The Security of data becomes an important aspect due to the storage of sensitive data in a cloud environment. In this paper, we give an overview of characteristics and state of art of big data and data security & privacy top threats, open issues and current challenges and their impact on business are discussed for future research perspective and review & analysis of previous and recent frameworks and architectures for data security that are continuously established against threats to enhance how to keep and store data in the cloud environment.

2020-08-28
Bucur, Cristian, Babulak, Eduard.  2019.  Security validation testing environment in the cloud. 2019 IEEE International Conference on Big Data (Big Data). :4240—4247.
Researchers are trying to find new ways of finding and pointing out Cybersecurity vulnerabilities by using innovative metrics. New theoretical proposals need to be tested in a real environment, using Cybersecurity tools applications that can validate the applicability of those in real life. This paper presents an experimental flexible environment, which can be used for the validation of several theoretical claims based on an “easy to use” architecture implemented in a cloud environment. The framework provides a much shorter time setup in the real world as well as a much better understanding based on log analysis provided by MS Azure. As a proof of concept, we have tested three different claims and provided proves of results such as screenshots and log samples.
2020-07-20
Masood, Raziqa, Pandey, Nitin, Rana, Q. P..  2017.  An approach of dredging the interconnected nodes and repudiating attacks in cloud network. 2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics (UPCON). :49–53.
In cloud computing environment, there are malignant nodes which create a huge problem to transfer data in communication. As there are so many models to prevent the data over the network, here we try to prevent or make secure to the network by avoiding mallicious nodes in between the communication. So the probabiliostic approach what we use here is a coherent tool to supervise the security challenges in the cloud environment. The matter of security for cloud computing is a superficial quality of service from cloud service providers. Even, cloud computing dealing everyday with new challenges, which is in process to well investigate. This research work draws the light on aspect regarding with the cloud data transmission and security by identifying the malignanat nodes in between the communication. Cloud computing network shared the common pool of resources like hardware, framework, platforms and security mechanisms. therefore Cloud Computing cache the information and deliver the secure transaction of data, so privacy and security has become the bone of contention which hampers the process to execute safely. To ensure the security of data in cloud environment, we proposed a method by implementing white box cryptography on RSA algorithm and then we work on the network, and find the malignant nodes which hampering the communication by hitting each other in the network. Several existing security models already have been deployed with security attacks. A probabilistic authentication and authorization approach is introduced to overcome this attack easily. It observes corrupted nodes before hitting with maximum probability. here we use a command table to conquer the malignant nodes. then we do the comparative study and it shows the probabilistic authentication and authorization protocol gives the performance much better than the old ones.
2020-07-13
Abur, Maria M., Junaidu, Sahalu B., Obiniyi, Afolayan A., Abdullahi, Saleh E..  2019.  Privacy Token Technique for Protecting User’s Attributes in a Federated Identity Management System for the Cloud Environment. 2019 2nd International Conference of the IEEE Nigeria Computer Chapter (NigeriaComputConf). :1–10.
Once an individual employs the use of the Internet for accessing information; carrying out transactions and sharing of data on the Cloud, they are connected to diverse computers on the network. As such, security of such transmitted data is most threatened and then potentially creating privacy risks of users on the federated identity management system in the Cloud. Usually, User's attributes or Personal Identifiable Information (PII) are needed to access Services on the Cloud from different Service Providers (SPs). Sometime these SPs may by themselves violate user's privacy by the reuse of user's attributes offered them for the release of services to the users without their consent and then carrying out activities that may appear malicious and then causing damage to the users. Similarly, it should be noted that sensitive user's attributes (e.g. first name, email, address and the likes) are received in their original form by needed SPs in plaintext. As a result of these problems, user's privacy is being violated. Since these SPs may reuse them or connive with other SPs to expose a user's identity in the cloud environment. This research is motivated to provide a protective and novel approach that shall no longer release original user's attributes to SPs but pseudonyms that shall prevent the SPs from violating user's privacy through connivance to expose the user's identity or other means. The paper introduces a conceptual framework for the proposed user's attributes privacy protection in a federated identity management system for the cloud. On the proposed system, the use of pseudonymous technique also called Privacy Token (PT) is employed. The pseudonymous technique ensures users' original attributes values are not sent directly to the SP but auto generated pseudo attributes values. The PT is composed of: Pseudo Attribute values, Timestamp and SPİD. These composition of the PT makes it difficult for the User's PII to be revealed and further preventing the SPs from being able to keep them or reuse them in the future without the user's consent for any purpose. Another important feature of the PT is its ability to forestall collusion among several collaborating service providers. This is due to the fact that each SP receives pseudo values that have no direct link to the identity of the user. The prototype was implemented with Java programming language and its performance tested on CloudAnalyst simulation.
2020-03-27
Liu, Wenqing, Zhang, Kun, Tu, Bibo, Lin, Kunli.  2019.  HyperPS: A Hypervisor Monitoring Approach Based on Privilege Separation. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :981–988.

In monolithic operating system (OS), any error of system software can be exploit to destroy the whole system. The situation becomes much more severe in cloud environment, when the kernel and the hypervisor share the same address space. The security of guest Virtual Machines (VMs), both sensitive data and vital code, can no longer be guaranteed, once the hypervisor is compromised. Therefore, it is essential to deploy some security approaches to secure VMs, regardless of the hypervisor is safe or not. Some approaches propose microhypervisor reducing attack surface, or a new software requiring a higher privilege level than hypervisor. In this paper, we propose a novel approach, named HyperPS, which separates the fundamental and crucial privilege into a new trusted environment in order to monitor hypervisor. A pivotal condition for HyperPS is that hypervisor must not be allowed to manipulate any security-sensitive system resources, such as page tables, system control registers, interaction between VM and hypervisor as well as VM memory mapping. Besides, HyperPS proposes a trusted environment which does not rely on any higher privilege than the hypervisor. We have implemented a prototype for KVM hypervisor on x86 platform with multiple VMs running Linux. KVM with HyperPS can be applied to current commercial cloud computing industry with portability. The security analysis shows that this approach can provide effective monitoring against attacks, and the performance evaluation confirms the efficiency of HyperPS.

2020-03-18
Uthayashangar, S., Dhamini, P., Mahalakshmi, M., Mangayarkarasi, V..  2019.  Efficient Group Data Sharing In Cloud Environment Using Honey Encryption. 2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN). :1–3.
Cloud computing is a rapid growing advanced technology which is Internet based, providing various ways for storage, resource sharing, and various features. It has brought a new way to securely store and share information and data with multiple users and groups. The cloud environment deals with many problems, and one of the most important problems in recent days is the security issues. Sharing the data in a group, in cloud conditions has turned into a blazing theme in up and coming decades. Thus the blasting interest in cloud computing, ways and measures to accomplish secure and effective information and data sharing in the cloud is a flourishing point to be engaged. In this way, the venture centers around empowering information sharing and capacity for a similar gathering inside the cloud with high security and intensity. Therefore, Honey Encryption and Advanced Encryption Standard is used for providing security for the data shared within the group by the crew members in cloud environment. In addition, an access key is provided by the Group Manager to enable access to the documents and files stored in cloud by the users for specific time period.
2020-03-09
Kandoussi, El Mehdi, El Mir, Iman, Hanini, Mohamed, Haqiq, Abdelkrim.  2019.  Modeling Virtual Machine Migration as a Security Mechanism by using Continuous-Time Markov Chain Model. 2019 4th World Conference on Complex Systems (WCCS). :1–6.

In Cloud Computing Environment, using only static security measures didn't mitigate the attack considerably. Hence, deployment of sophisticated methods by the attackers to understand the network topology of complex network makes the task easier. For this reason, the use of dynamic security measure as virtual machine (VM) migration increases uncertainty to locate a virtual machine in a dynamic attack surface. Although this, not all VM's migration enhances security. Indeed, the destination server to host the VM should be selected precisely in order to avoid externality and attack at the same time. In this paper, we model migration in cloud environment by using continuous Markov Chain. Then, we analyze the probability of a VM to be compromised based on the destination server parameters. Finally, we provide some numerical results to show the effectiveness of our approach in term of avoiding intrusion.

2020-01-21
Vo, Tri Hoang, Fuhrmann, Woldemar, Fischer-Hellmann, Klaus-Peter, Furnell, Steven.  2019.  Efficient Privacy-Preserving User Identity with Purpose-Based Encryption. 2019 International Symposium on Networks, Computers and Communications (ISNCC). :1–8.
In recent years, users may store their Personal Identifiable Information (PII) in the Cloud environment so that Cloud services may access and use it on demand. When users do not store personal data in their local machines, but in the Cloud, they may be interested in questions such as where their data are, who access it except themselves. Even if Cloud services specify privacy policies, we cannot guarantee that they will follow their policies and will not transfer user data to another party. In the past 10 years, many efforts have been taken in protecting PII. They target certain issues but still have limitations. For instance, users require interacting with the services over the frontend, they do not protect identity propagation between intermediaries and against an untrusted host, or they require Cloud services to accept a new protocol. In this paper, we propose a broader approach that covers all the above issues. We prove that our solution is efficient: the implementation can be easily adapted to existing Identity Management systems and the performance is fast. Most importantly, our approach is compliant with the General Data Protection Regulation from the European Union.
2020-01-20
Liu, Donglan, Zhang, Hao, Wang, Wenting, Zhao, Yang, Zhao, Xiaohong, Yu, Hao, Lv, Guodong, Zhao, Yong.  2019.  Research on Protection for the Database Security Based on the Cloud of Smart Grid. 2019 IEEE 11th International Conference on Communication Software and Networks (ICCSN). :585–589.

As cloud services enter the Internet market, cloud security issues are gradually exposed. In the era of knowledge economy, the unique potential value of big data is being gradually explored. However, the control of data security is facing many challenges. According to the development status and characteristics of database within the cloud environment, this paper preliminary studies on the database security risks faced by the “three-clouds” of State Grid Corporation of China. Based on the mature standardization of information security, this paper deeply studies the database security requirements of cloud environment, and six-step method for cloud database protection is presented, which plays an important role in promoting development of security work for the cloud database. Four key technologies of cloud database security protection are introduced, including database firewall technology, sensitive data encryption, production data desensitization, and database security audit technology. It is helpful to the technology popularization of the grade protection in the security of the cloud database, and plays a great role in the construction of the security of the state grid.

2019-11-18
Chowdhary, Ankur, Huang, Dijiang, Alshamrani, Adel, Kang, Myong, Kim, Anya, Velazquez, Alexander.  2019.  TRUFL: Distributed Trust Management Framework in SDN. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1–6.
Software Defined Networking (SDN) has emerged as a revolutionary paradigm to manage cloud infrastructure. SDN lacks scalable trust setup and verification mechanism between Data Plane-Control Plane elements, Control Plane elements, and Control Plane-Application Plane. Trust management schemes like Public Key Infrastructure (PKI) used currently in SDN are slow for trust establishment in a larger cloud environment. We propose a distributed trust mechanism - TRUFL to establish and verify trust in SDN. The distributed framework utilizes parallelism in trust management, in effect faster transfer rates and reduced latency compared to centralized trust management. The TRUFL framework scales well with the number of OpenFlow rules when compared to existing research works.
2019-08-05
Lei, S., Zewu, W., Kun, Z., Ruichen, S., Shuai, L..  2018.  Research and design of cryptography cloud framework. 2018 IEEE 3rd International Conference on Cloud Computing and Big Data Analysis (ICCCBDA). :147–154.

Since the application mode of cryptography technology currently has different types in the cloud environment, a novel cryptography cloud framework was proposed, due to the non-expandability of cryptography resources. Through researching on the application models of the current encryption technology, the cryptography service demand under the cloud environment and the virtual structure of the cloud cryptography machine, this paper designed the framework of the cryptography cloud framework that provides cryptography services with the cloud computing mode. the design idea of the framework is expounded from two aspects include the function of modules and service flow of cryptography cloud, which resulted in the improvement of the flexibility of the application of cryptography technology in the cloud environment. Through the analysis of system function and management mode, it illustrated the availability and security of cryptography cloud framework. It was proved that cryptography cloud has the characteristics of high-availability in the implementation and experiment, and it can satisfy cryptography service demand in the cloud environment.

2018-05-09
Mahajan, V., Peddoju, S. K..  2017.  Integration of Network Intrusion Detection Systems and Honeypot Networks for Cloud Security. 2017 International Conference on Computing, Communication and Automation (ICCCA). :829–834.

With an aim of provisioning fast, reliable and low cost services to the users, the cloud-computing technology has progressed leaps and bounds. But, adjacent to its development is ever increasing ability of malicious users to compromise its security from outside as well as inside. The Network Intrusion Detection System (NIDS) techniques has gone a long way in detection of known and unknown attacks. The methods of detection of intrusion and deployment of NIDS in cloud environment are dependent on the type of services being rendered by the cloud. It is also important that the cloud administrator is able to determine the malicious intensions of the attackers and various methods of attack. In this paper, we carry out the integration of NIDS module and Honeypot Networks in Cloud environment with objective to mitigate the known and unknown attacks. We also propose method to generate and update signatures from information derived from the proposed integrated model. Using sandboxing environment, we perform dynamic malware analysis of binaries to derive conclusive evidence of malicious attacks.

2018-05-02
Rjoub, G., Bentahar, J..  2017.  Cloud Task Scheduling Based on Swarm Intelligence and Machine Learning. 2017 IEEE 5th International Conference on Future Internet of Things and Cloud (FiCloud). :272–279.

Cloud computing is the expansion of parallel computing, distributed computing. The technology of cloud computing becomes more and more widely used, and one of the fundamental issues in this cloud environment is related to task scheduling. However, scheduling in Cloud environments represents a difficult issue since it is basically NP-complete. Thus, many variants based on approximation techniques, especially those inspired by Swarm Intelligence (SI) have been proposed. This paper proposes a machine learning algorithm to guide the cloud choose the scheduling technique by using multi criteria decision to optimize the performance. The main contribution of our work is to minimize the makespan of a given task set. The new strategy is simulated using the CloudSim toolkit package where the impact of the algorithm is checked with different numbers of VMs varying from 2 to 50, and different task sizes between 30 bytes and 2700 bytes. Experiment results show that the proposed algorithm minimizes the execution time and the makespan between 7% and 75%, and improves the performance of the load balancing scheduling.

2018-02-14
Naik, N., Jenkins, P..  2017.  Securing digital identities in the cloud by selecting an apposite Federated Identity Management from SAML, OAuth and OpenID Connect. 2017 11th International Conference on Research Challenges in Information Science (RCIS). :163–174.
Access to computer systems and the information held on them, be it commercially or personally sensitive, is naturally, strictly controlled by both legal and technical security measures. One such method is digital identity, which is used to authenticate and authorize users to provide access to IT infrastructure to perform official, financial or sensitive operations within organisations. However, transmitting and sharing this sensitive information with other organisations over insecure channels always poses a significant security and privacy risk. An example of an effective solution to this problem is the Federated Identity Management (FIdM) standard adopted in the cloud environment. The FIdM standard is used to authenticate and authorize users across multiple organisations to obtain access to their networks and resources without transmitting sensitive information to other organisations. Using the same authentication and authorization details among multiple organisations in one federated group, it protects the identities and credentials of users in the group. This protection is a balance, mitigating security risk whilst maintaining a positive experience for users. Three of the most popular FIdM standards are Security Assertion Markup Language (SAML), Open Authentication (OAuth), and OpenID Connect (OIDC). This paper presents an assessment of these standards considering their architectural design, working, security strength and security vulnerability, to cognise and ascertain effective usages to protect digital identities and credentials. Firstly, it explains the architectural design and working of these standards. Secondly, it proposes several assessment criteria and compares functionalities of these standards based on the proposed criteria. Finally, it presents a comprehensive analysis of their security vulnerabilities to aid in selecting an apposite FIdM. This analysis of security vulnerabilities is of great significance because their improper or erroneous deployme- t may be exploited for attacks.
2017-12-28
Imine, Y., Lounis, A., Bouabdallah, A..  2017.  Immediate Attribute Revocation in Decentralized Attribute-Based Encryption Access Control. 2017 IEEE Trustcom/BigDataSE/ICESS. :33–40.

Access control is one of the most challenging issues in Cloud environment, it must ensure data confidentiality through enforced and flexible access policies. The revocation is an important task of the access control process, generally it consists on banishing some roles from the users. Attribute-based encryption is a promising cryptographic method which provides the fine-grained access, which makes it very useful in case of group sharing applications. This solution has initially been developed on a central authority model. Later, it has been extended to a multi-authority model which is more convenient and more reliable. However, the revocation problem is still the major challenge of this approach. There have been few proposed revocation solutions for the Multi-authority scheme and these solutions suffer from the lack of efficiency. In this paper, we propose an access control mechanism on a multi-authority architecture with an immediate and efficient attributes' or users' revocation. The proposed scheme uses decentralized CP-ABE to provide flexible and fine-grained access. Our solution provides collusion resistance, prevents security degradations, supports scalability and does not require keys' redistribution.

Manoja, I., Sk, N. S., Rani, D. R..  2017.  Prevention of DDoS attacks in cloud environment. 2017 International Conference on Big Data Analytics and Computational Intelligence (ICBDAC). :235–239.

Cloud computing emerges as an endowment technological data for the longer term and increasing on one of the standards of utility computing is most likely claimed to symbolize a wholly new paradigm for viewing and getting access to computational assets. As a result of protection problem many purchasers hesitate in relocating their touchy data on the clouds, regardless of gigantic curiosity in cloud-based computing. Security is a tremendous hassle, considering the fact that so much of firms present a alluring goal for intruders and the particular considerations will pursue to lower the advancement of distributed computing if not located. Hence, this recent scan and perception is suitable to honeypot. Distributed Denial of Service (DDoS) is an assault that threats the availability of the cloud services. It's fundamental investigate the most important features of DDoS Defence procedures. This paper provides exact techniques that been carried out to the DDoS attack. These approaches are outlined in these paper and use of applied sciences for special kind of malfunctioning within the cloud.

2017-12-20
Althamary, I. A., El-Alfy, E. S. M..  2017.  A more secure scheme for CAPTCHA-based authentication in cloud environment. 2017 8th International Conference on Information Technology (ICIT). :405–411.

Cloud computing is a remarkable model for permitting on-demand network access to an elastic collection of configurable adaptive resources and features including storage, software, infrastructure, and platform. However, there are major concerns about security-related issues. A very critical security function is user authentication using passwords. Although many flaws have been discovered in password-based authentication, it remains the most convenient approach that people continue to utilize. Several schemes have been proposed to strengthen its effectiveness such as salted hashes, one-time password (OTP), single-sign-on (SSO) and multi-factor authentication (MFA). This study proposes a new authentication mechanism by combining user's password and modified characters of CAPTCHA to generate a passkey. The modification of the CAPTCHA depends on a secret agreed upon between the cloud provider and the user to employ different characters for some characters in the CAPTCHA. This scheme prevents various attacks including short-password attack, dictionary attack, keylogger, phishing, and social engineering. Moreover, it can resolve the issue of password guessing and the use of a single password for different cloud providers.

2017-03-08
Casola, V., Benedictis, A. D., Rak, M., Villano, U..  2015.  DoS Protection in the Cloud through the SPECS Services. 2015 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC). :677–682.

Security in cloud environments is always considered an issue, due to the lack of control over leased resources. In this paper, we present a solution that offers security-as-a-service by relying on Security Service Level Agreements (Security SLAs) as a means to represent the security features to be granted. In particular, we focus on a security mechanism that is automatically configured and activated in an as-a-service fashion in order to protect cloud resources against DoS attacks. The activities reported in this paper are part of a wider work carried out in the FP7-ICT programme project SPECS, which aims at building a framework offering Security-as-a-Service using an SLA-based approach. The proposed approach founds on the adoption of SPECS Services to negotiate, to enforce and to monitor suitable security metrics, chosen by cloud customers, negotiated with the provider and included in a signed Security SLA.

2017-03-07
Tirumala, S. S., Sathu, H., Naidu, V..  2015.  Analysis and Prevention of Account Hijacking Based INCIDENTS in Cloud Environment. 2015 International Conference on Information Technology (ICIT). :124–129.

Cloud computing is a technological breakthrough in computing. It has affected each and every part of the information technology, from infrastructure to the software deployment, from programming to the application maintenance. Cloud offers a wide array of solutions for the current day computing needs aided with benefits like elasticity, affordability and scalability. But at the same time, the incidence of malicious cyber activity is progressively increasing at an unprecedented rate posing critical threats to both government and enterprise IT infrastructure. Account or service hijacking is a kind of identity theft and has evolved to be one of the most rapidly increasing types of cyber-attack aimed at deceiving end users. This paper presents an in depth analysis of a cloud security incident that happened on The New York Times online using account hijacking. Further, we present incident prevention methods and detailed incident prevention plan to stop future occurrence of such incidents.

2015-05-05
Bertino, E., Samanthula, B.K..  2014.  Security with privacy - A research agenda. Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom), 2014 International Conference on. :144-153.

Data is one of the most valuable assets for organization. It can facilitate users or organizations to meet their diverse goals, ranging from scientific advances to business intelligence. Due to the tremendous growth of data, the notion of big data has certainly gained momentum in recent years. Cloud computing is a key technology for storing, managing and analyzing big data. However, such large, complex, and growing data, typically collected from various data sources, such as sensors and social media, can often contain personally identifiable information (PII) and thus the organizations collecting the big data may want to protect their outsourced data from the cloud. In this paper, we survey our research towards development of efficient and effective privacy-enhancing (PE) techniques for management and analysis of big data in cloud computing.We propose our initial approaches to address two important PE applications: (i) privacy-preserving data management and (ii) privacy-preserving data analysis under the cloud environment. Additionally, we point out research issues that still need to be addressed to develop comprehensive solutions to the problem of effective and efficient privacy-preserving use of data.