Biblio
With the widespread of cloud computing, the delegation of storage and computing is becoming a popular trend. Concerns on data integrity, security, user privacy as well as the correctness of execution are highlighted due to the untrusted remote data manipulation. Most of existing proposals solve the integrity checking and verifiable computation problems by challenge-response model, but are lack of scalability and reusability. Via blockchain, we achieve efficient and transparent public verifiable delegation for both storage and computing. Meanwhile, the smart contract provides API for request handling and secure data query. The security and privacy issues of data opening are settled by applying cryptographic algorithms all through the delegations. Additionally, any access to the outsourced data requires the owner's authentication, so that the dat transference and utilization are under control.
In cloud storage systems, users can upload their data along with associated tags (authentication information) to cloud storage servers. To ensure the availability and integrity of the outsourced data, provable data possession (PDP) schemes convince verifiers (users or third parties) that the outsourced data stored in the cloud storage server is correct and unchanged. Recently, several PDP schemes with designated verifier (DV-PDP) were proposed to provide the flexibility of arbitrary designated verifier. A designated verifier (private verifier) is trustable and designated by a user to check the integrity of the outsourced data. However, these DV-PDP schemes are either inefficient or insecure under some circumstances. In this paper, we propose the first non-repudiable PDP scheme with designated verifier (DV-NRPDP) to address the non-repudiation issue and resolve possible disputations between users and cloud storage servers. We define the system model, framework and adversary model of DV-NRPDP schemes. Afterward, a concrete DV-NRPDP scheme is presented. Based on the computing discrete logarithm assumption, we formally prove that the proposed DV-NRPDP scheme is secure against several forgery attacks in the random oracle model. Comparisons with the previously proposed schemes are given to demonstrate the advantages of our scheme.
Cloud computing is a new computing paradigm which encourages remote data storage. This facility shoots up the necessity of secure data auditing mechanism over outsourced data. Several mechanisms are proposed in the literature for supporting dynamic data. However, most of the existing schemes lack the security feature, which can withstand collusion attacks between the cloud server and the abrogated users. This paper presents a technique to overthrow the collusion attacks and the data auditing mechanism is achieved by means of vector commitment and backward unlinkable verifier local revocation group signature. The proposed work supports multiple users to deal with the remote cloud data. The performance of the proposed work is analysed and compared with the existing techniques and the experimental results are observed to be satisfactory in terms of computational and time complexity.
Remote data integrity checking is of crucial importance in cloud storage. It can make the clients verify whether their outsourced data is kept intact without downloading the whole data. In some application scenarios, the clients have to store their data on multicloud servers. At the same time, the integrity checking protocol must be efficient in order to save the verifier's cost. From the two points, we propose a novel remote data integrity checking model: ID-DPDP (identity-based distributed provable data possession) in multicloud storage. The formal system model and security model are given. Based on the bilinear pairings, a concrete ID-DPDP protocol is designed. The proposed ID-DPDP protocol is provably secure under the hardness assumption of the standard CDH (computational Diffie-Hellman) problem. In addition to the structural advantage of elimination of certificate management, our ID-DPDP protocol is also efficient and flexible. Based on the client's authorization, the proposed ID-DPDP protocol can realize private verification, delegated verification, and public verification.
Data is one of the most valuable assets for organization. It can facilitate users or organizations to meet their diverse goals, ranging from scientific advances to business intelligence. Due to the tremendous growth of data, the notion of big data has certainly gained momentum in recent years. Cloud computing is a key technology for storing, managing and analyzing big data. However, such large, complex, and growing data, typically collected from various data sources, such as sensors and social media, can often contain personally identifiable information (PII) and thus the organizations collecting the big data may want to protect their outsourced data from the cloud. In this paper, we survey our research towards development of efficient and effective privacy-enhancing (PE) techniques for management and analysis of big data in cloud computing.We propose our initial approaches to address two important PE applications: (i) privacy-preserving data management and (ii) privacy-preserving data analysis under the cloud environment. Additionally, we point out research issues that still need to be addressed to develop comprehensive solutions to the problem of effective and efficient privacy-preserving use of data.